简单利用conda安装tensorflow-gpu=2.2.0

网上安装tensorflow-gpu=2.2.0什么的一大推,而且最后还报错,一般问题出现在:
一、安装下载慢
二、cuda和cudnn版本不对

我最后实验了,很好解决上面的问题。

一、安装tensorflow-gpu=2.2.0使用清华源安装,代码如下:

pip install tensorflow-gpu==2.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

这样下载速度飞起!

补充其他的几个镜像网址

清华:https://pypi.tuna.tsinghua.edu.cn/simple
阿里云:http://mirrors.aliyun.com/pypi/simple/
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
华中理工大学:http://pypi.hustunique.com/
山东理工大学:http://pypi.sdutlinux.org/
豆瓣:http://pypi.douban.com/simple/

pip --default-timeout=1000000 install -U -i https://pypi.tuna.tsinghua.edu.cn/simple/ --upgrade tensorflow-gpu==2.0.0 这样还可以防止超时,还是指定版本
卸载 pip uninstall tensorflow-gpu

二、什么去官网下载cuda版本配置路径,感觉都不靠谱,我实验了,一个命令搞定,我的是1080Ti显卡,先通过GeForce Experience把驱动更新到最新,我的cuda信息如下:


在这里插入图片描述

我cuda的是11.0,这不重要,一般需要cuda是10.1或者以上就可以了。
然后一句代码安装:

conda install cudatoolkit=10.1 cudnn=7.6.5
#如果出错的话,尝试添加 -c conda-forge
conda install cudatoolkit=11.2 cudnn=8.1 -c conda-forge

注意:不要改上面的版本,不然安装成功了,使用时报错,这里就是个坑,我试过很多,这两个版本才是对应的,不管tensorflow-gpu=2.0/2.1/2.2,都适用
安装好后测试下,测试代码;

import tensorflow as tf
import timeit
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # 代码用于忽略级别 2 及以下的消息(级别 1 是提示,级别 2 是警告,级别 3 是错误)。

with tf.device('/cpu:0'):
    cpu_a = tf.random.normal([10000, 1000])
    cpu_b = tf.random.normal([1000, 2000])
    print(cpu_a.device, cpu_b.device)

with tf.device('/gpu:0'):
    gpu_a = tf.random.normal([10000, 1000])
    gpu_b = tf.random.normal([1000, 2000])
    print(gpu_a.device, gpu_b.device)

def cpu_run():
    with tf.device('/cpu:0'):
        c = tf.matmul(cpu_a, cpu_b)
    return c

def gpu_run():
    with tf.device('/gpu:0'):
        c = tf.matmul(gpu_a, gpu_b)
    return c

# warm up
cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print('warmup:', cpu_time, gpu_time)

cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print('run time:', cpu_time, gpu_time)

print('GPU', tf.test.is_gpu_available())

结果为:

warmup: 1.1624844 1.8189751
run time: 1.1631149999999995 0.0005907000000000551
GPU True

这样就安装成功了!
另外推荐个自动补全插件,很好用,TabNine,安装方法链接如下:
https://www.tabnine.com/

2020年10月11号更新
最近可能出现的版本问题报错,例如:
AttributeError: module ‘tensorflow’ has no attribute ‘compat’
解决方案:https://blog.csdn.net/weixin_45092662/article/details/106969426

有用请点个赞!!
本站所有文章均为原创,欢迎转载,请注明文章出处:https://blog.csdn.net/weixin_45092662。百度和各类采集站皆不可信,搜索请谨慎鉴别。技术类文章一般都有时效性,本人习惯不定期对自己的博文进行修正和更新,因此请访问出处以查看本文的最新版本。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容