故事内容:
20世纪著名数学家诺伯特•维纳,从小就智力超常,三岁时就能读写,十四岁时就大学毕业了。几年后,他又通过了博士论文答辩,成为美国哈佛大学的科学博士。
在博士学位的授予仪式上,执行主席看到一脸稚气的维纳,颇为惊讶,于是就当面询问他的年龄。维纳不愧为数学神童,他的回答十分巧妙:“我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,不重不漏。这意味着全体数字都向我俯首称臣,预祝我将来在数学领域里一定能干出一番惊天动地的大事业。”
维纳此言一出,四座皆惊,大家都被他的这道妙题深深地吸引住了。整个会场上的人,都在议论他的年龄问题。
其实这个问题不难解答,但是需要一点数字“灵感”。不难发现,21的立方是四位数,而22的立方已经是五位数了,所以维纳的年龄最多是21岁;同样道理,18的四次方是六位数,而17的四次方则是五位数了,所以维纳的年龄至少是18岁。这样,维纳的年龄只可能是18、19、20、21这四个数中的一个。
剩下的工作就是“ 筛选”了。20的立方是8000,有3个重复数字0,不合题意。同理,19的四次方等于130321,21的四次方等于194481,都不合题意。最后只剩下一个18,是不是正确答案呢?验算一下,18的立方等于5832,四次方等于104976,恰好“不重不漏”地用完了十个阿拉伯数字,多么完美的组合!
这个年仅18岁的少年博士,后来果然成就了一番大事业:他成为信息论的前驱和控制论的奠基人。
故事的启迪:年龄不是问题,天才是在不断的摸索和思考中锻炼出来的。