机器学习面试题-比较下MSE和交叉熵

关注微信公众号“机器学习算法面试”获得更多机器学习面试题

问题引入

在之前的文章中也说过为啥LR用sigmod函数,这里着重说一下为啥分类问题用到交叉熵比较多呢,为啥不用MSE这些呢?交叉熵有啥好处?本文主要比较小MSE以及交叉熵,关于LR为啥用sigmod函数,分类问题中为啥用交叉熵这些问题,在这里可以找到。

问题解答

首先来看两者的表达式:
MSE:
L = \frac{1}{N} \sum_{i=1}^{N} ||y_i - \hat{y}_i ||_2^2
交叉熵:
L = \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} y_i^k * \log \hat{y}_i^k"
可以看到,对于分类问题,实际的标签为0和1,那么交叉熵很多项是不用算的,举个例子,
实际标签是[1,0,0],模型预测得到的概率是[0.9,0.4,0.3],那么交叉熵损失函数的结果是 1log(0.9)+0log(0.4)+0log(0.3),而MSE则都得全部算一遍。因此我们得到结论1

结论1:MSE无差别得关注全部类别上预测概率和真实概率的差.交叉熵关注的是正确类别的预测概率.
其次,我们在之前的文章中也说到了关于求解优化模型的时候的问题,MSE会收敛的慢一些,因为它求导的结果相比于交叉熵还多乘以一个sigmod函数,但是交叉熵梯度中不再含有sigmoid的导数,有的是sigmoid的值和实际值之间的差,也就满足了我们之前所说的错误越大,下降的越快的要求,你说爽不爽,因而得到结论2,也就是交叉熵更有利于梯度更新。
第三点:MSE是假设数据符合高斯分布时,模型概率分布的负条件对数似然;交叉熵是假设模型分布为多项式分布时,模型分布的负条件对数似然。
还有一点要说明,MSE对残差大的样例惩罚更大些.,我们还举个例子看看,比如真实标签分别是(1, 0, 0).模型1的预测标签是(0.8, 0.2, 0),模型2的是(0.9, 0.1, 0). 但MSE-based算出来模型1的误差是MSE-based算出模型2的4倍,而交叉熵-based算出来模型1的误差是交叉熵-based算出来模型2的2倍左右.对于模型1和模型2输出的结果。其实也主要是由于MSE太苛刻了,想要把左右的值都预测的分毫不差,而交叉熵只关注正样本也也是就1的那些,计算那些损失函数就可以了,样本标签为0的压根不用算。
https://www.zhihu.com/collection/167905820
https://zhuanlan.zhihu.com/p/61944055
https://blog.csdn.net/b1055077005/article/details/100152102

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343