10X单细胞(10X空间转录组)数据分析之识别肿瘤细胞的CNV分析原理

hello,大家好,今天我们来总结单细胞数据识别肿瘤细胞的分析原理。其中单细胞识别肿瘤细胞最大的问题在于,reference,什么细胞作为reference,上皮细胞癌变,自然是正常的上皮细胞作为reference,但很多时候,光依靠单细胞数据我们我们无法区分恶性和非恶性的细胞类型,CNV判断也需要很精准的人为监督和数据分析,这一次,我们来分析一下识别恶性细胞的分析原理。

这里要注意啊,一定要使用配套的单细胞数据,确保其中含有恶性的细胞类型,不然光有正常的细胞类型也能分析出结果,拿到的结果是没有任何用处的。

大家推断CNV应该用的是inferCNV或者copycat,原理都差不多。个人倾向于copycat。

CNV Estimation:Initial CNVs (CNV0) were estimated by sorting the analyzed genes by their chromosomal location and applying a moving average to the relative expression values, with a sliding window of 100 genes within each chromosome, 这里大家应该都知道才对。我们逐步解读。

第一步:To avoid considerable impact of any particular gene on the moving average, we limited the relative expression values to [-3,3] by replacing all values above 3 by a ceiling of 3, and replacing values below -3 by a floor of -3.(这里不知道大家知道多少,对数据进行剪接,这是必要的)This was performed only in the context of CNV estimation。
第二步:We scored each cell for the extent of CNV signal, defined as the mean of squares of CNV0 values across the genome, and for the correlation between the CNV0 profile of each cell with the average CNV0 profile of all cells from the corresponding tumor.(这个地方不陌生吧,就是对CNV的判断)。
第三步:Putative malignant cells were then defined as those with CNV signal above 0.05 and CNV correlation above 0.5, putative non-malignant cells as those below the two cutoffs, and unresolved cells as those above only one of the thresholds.(跟inferCNV的软件阈值是一致的).
第四步:检验,This initial analysis was based on the average CNV0 of all cells as a reference, which is biased due to the inclusion of many malignant cells. We thus redefined CNV estimations, the CNV signal, and CNV correlations values using the average patterns of nonmalignant cells as a reference.(真正的ref必然是相同细胞类型的正常细胞)。
第五步:CNV estimate :
图片.png
当然,inferCNV软件还有一步降噪,大家感兴趣可以多多看看,总结归纳。
图片.png

基础知识,多多学习,生活很好,有你更好

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容