import resource
import cv2 # computer vision library
import helpers
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
%matplotlib inline
训练/测试数据
# Image data directories
image_dir_training = "day_night_images/training/"
image_dir_test = "day_night_images/test/"
IMAGE_LIST = helpers.load_dataset(image_dir_training)
可视化数据
# Print out 1. The shape of the image and 2. The image's label
# Select an image and its label by list index
image_index = 0
selected_image = IMAGE_LIST[image_index][0]
selected_label = IMAGE_LIST[image_index][1]
# Display image and data about it
plt.imshow(selected_image)
print("Shape: "+str(selected_image.shape))
print("Label: " + str(selected_label))
预处理数据
输入
输入数据应该相同尺寸,相同形式。这里我们将图片尺寸修订在600*1100
def standardize_input(image):
standedinput = cv2.resize(image, (1100, 600))
return standedinput
输出
# encode("day") should return: 1
# encode("night") should return: 0
def encode(label):
numerical_val = 0
## TODO: complete the code to produce a numerical label
if(label == 'day'):
numerical_val = 1
return numerical_val
def standardize(image_list):
# Empty image data array
standard_list = []
# Iterate through all the image-label pairs
for item in image_list:
image = item[0]
label = item[1]
# Standardize the image
standardized_im = standardize_input(image)
# Create a numerical label
binary_label = encode(label)
# Append the image, and it's one hot encoded label to the full, processed list of image data
standard_list.append((standardized_im, binary_label))
return standard_list
# Standardize all training images
STANDARDIZED_LIST = standardize(IMAGE_LIST)
Visualize the standardized data
# Select an image by index
image_num = 0
selected_image = STANDARDIZED_LIST[image_num][0]
selected_label = STANDARDIZED_LIST[image_num][1]
# Display image and data about it
## TODO: Make sure the images have numerical labels and are of the same size
plt.imshow(selected_image)
print("Shape: "+str(selected_image.shape))
print("Label [1 = day, 0 = night]: " + str(selected_label))