tensorflow笔记(第六章)

断点续训,在mnist_backward.py中的with tf.Session()下加入ckpt的那三句话

图片.png

实现输入手写数字图片输出识别结果

代码可能存在未对齐的情况

mnist_app.py

#coding:utf-8
import tensorflow as tf
import numpy as np
from PIL import Image
import mnist_backward
import mnist_forward

def restore_model(testPicArr):
    with tf.Graph().as_default() as tg:
        x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
        y = mnist_forward.forward(x, None)
        preValue = tf.argmax(y, 1)
        variable_averages = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        with tf.Session() as sess:
            ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
        
                preValue = sess.run(preValue, feed_dict={x:testPicArr})
                return preValue
            else:
                print("No checkpoint file found")
                return -1
#预处理
def pre_pic(picName):
    img = Image.open(picName) #打开传入的图片
    reIm = img.resize((28,28), Image.ANTIALIAS)  #为符合shape,用消除锯齿的方法resize
    im_arr = np.array(reIm.convert('L')) #为符合颜色的要求,变成灰度图,并转化成矩阵的形式
    threshold = 50
    #模型要求输入的是黑底白字,我们输入的图片是白底黑字
    #反色
    for i in range(28):
        for j in range(28):
            im_arr[i][j] = 255 - im_arr[i][j]  #求得互补的反色
            if (im_arr[i][j] < threshold):  #给图片做二值化处理,让图片只有纯白色点和纯黑色点,可以滤掉手写数字图片中的噪声,留下图片主要特征
            #灰度图像二值化最常用的方法是阈值法,他利用图像中目标与背景的差异,把图像分别设置为两个不同的级别,选取一个合适的阈值,以确定某像素是目标还是背景,从而获得二值化的图像。
                im_arr[i][j] = 0 #纯黑色是0
            else: im_arr[i][j] = 255 #纯白色255

    nm_arr = im_arr.reshape([1, 784])
    nm_arr = nm_arr.astype(np.float32)
    img_ready = np.multiply(nm_arr, 1.0/255.0)

    return img_ready

def application():
    testNum = int(input("input the number of test pictures:") )#输入要识别几张图片,input函数可以实现从控制台读入数字
    for i in range(testNum):
        testPic = input("the path of test picture:") #给出识别图片的路径和名称,raw_input函数实现从控制台读入字符串
        testPicArr = pre_pic(testPic)
        preValue = restore_model(testPicArr)
        print "The prediction number is:", preValue

def main():
    application()

if __name__ == '__main__':
    main()      

代码及手写图片下载地址
我自己手写了一个5,结果给我识别成3了,呜呜呜~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,490评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,581评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,830评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,957评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,974评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,754评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,464评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,847评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,995评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,137评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,819评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,482评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,023评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,149评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,409评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,086评论 2 355