Yarn 内存分配管理机制及相关参数配置

一、相关配置情况

关于Yarn内存分配与管理,主要涉及到了ResourceManage、ApplicationMatser、NodeManager这几个概念,相关的优化也要紧紧围绕着这几方面来开展。这里还有一个Container的概念,现在可以先把它理解为运行map/reduce task的容器,后面有详细介绍。

1.1 RM的内存资源配置, 配置的是资源调度相关

RM1:yarn.scheduler.minimum-allocation-mb 分配给AM单个容器可申请的最小内存 

RM2:yarn.scheduler.maximum-allocation-mb 分配给AM单个容器可申请的最大内存 

注:

最小值可以计算一个节点最大Container数量

一旦设置,不可动态改变

1.2 NM的内存资源配置,配置的是硬件资源相关

NM1:yarn.nodemanager.resource.memory-mb 节点最大可用内存 

NM2:yarn.nodemanager.vmem-pmem-ratio 虚拟内存率,默认2.1 

注:

RM1、RM2的值均不能大于NM1的值

NM1可以计算节点最大最大Container数量,max(Container)=NM1/RM1

一旦设置,不可动态改变

1.3 AM内存配置相关参数,配置的是任务相关

AM1:mapreduce.map.memory.mb 分配给map Container的内存大小 

AM2:mapreduce.reduce.memory.mb 分配给reduce Container的内存大小

这两个值应该在RM1和RM2这两个值之间

AM2的值最好为AM1的两倍

这两个值可以在启动时改变

AM3:mapreduce.map.java.opts 运行map任务的jvm参数,如-Xmx,-Xms等选项 

AM4:mapreduce.reduce.java.opts 运行reduce任务的jvm参数,如-Xmx,-Xms等选项 

注:

这两个值应该在AM1和AM2之间

二、对于这些配置概念的理解

知道有这些参数,还需理解其如何分配,下面我就一副图让大家更形象的了解各个参数的含义。 


如上图所示,先看最下面褐色部分, 

AM参数mapreduce.map.memory.mb=1536MB,表示AM要为map Container申请1536MB资源,但RM实际分配的内存却是2048MB,因为yarn.scheduler.mininum-allocation-mb=1024MB,这定义了RM最小要分配1024MB,1536MB超过了这个值,所以实际分配给AM的值为2048MB(这涉及到了规整化因子,关于规整化因子,在本文最后有介绍)。 

AM参数mapreduce.map.java.opts=-Xmx 1024m,表示运行map任务的jvm内存为1024MB,因为map任务要运行在Container里面,所以这个参数的值略微小于mapreduce.map.memory.mb=1536MB这个值。 

NM参数yarn.nodemanager.vmem-pmem-radio=2.1,这表示NodeManager可以分配给map/reduce Container 2.1倍的虚拟内存,安照上面的配置,实际分配给map Container容器的虚拟内存大小为2048*2.1=3225.6MB,若实际用到的内存超过这个值,NM就会kill掉这个map Container,任务执行过程就会出现异常。 

AM参数mapreduce.reduce.memory.mb=3072MB,表示分配给reduce Container的容器大小为3072MB,而map Container的大小分配的是1536MB,从这也看出,reduce Container容器的大小最好是map Container大小的两倍。 

NM参数yarn.nodemanager.resource.mem.mb=24576MB,这个值表示节点分配给NodeManager的可用内存,也就是节点用来执行yarn任务的内存大小。这个值要根据实际服务器内存大小来配置,比如我们hadoop集群机器内存是128GB,我们可以分配其中的80%给yarn,也就是102GB。 

上图中RM的两个参数分别1024MB和8192MB,分别表示分配给AM map/reduce Container的最大值和最小值。

三、关于任务提交过程

3.1 任务提交过程

步骤1:用户将应用程序提交到ResourceManager上;

步骤2:ResourceManager为应用程序ApplicationMaster申请资源,并与某个NodeManager通信,以启动ApplicationMaster;

步骤3:ApplicationMaster与ResourceManager通信,为内部要执行的任务申请资源,一旦得到资源后,将于NodeManager通信,以启动对应的任务。

步骤4:所有任务运行完成后,ApplicationMaster向ResourceManager注销,整个应用程序运行结束。

3.2 关于Container

(1)Container是YARN中资源的抽象,它封装了某个节点上一定量的资源(CPU和内存两类资源)。它跟Linux Container没有任何关系,仅仅是YARN提出的一个概念(从实现上看,可看做一个可序列化/反序列化的Java类)。 

(2)Container由ApplicationMaster向ResourceManager申请的,由ResouceManager中的资源调度器异步分配给ApplicationMaster; 

(3)Container的运行是由ApplicationMaster向资源所在的NodeManager发起的,Container运行时需提供内部执行的任务命令(可以使任何命令,比如java、Python、C++进程启动命令均可)以及该命令执行所需的环境变量和外部资源(比如词典文件、可执行文件、jar包等)。 

另外,一个应用程序所需的Container分为两大类,如下: 

(1) 运行ApplicationMaster的Container:这是由ResourceManager(向内部的资源调度器)申请和启动的,用户提交应用程序时,可指定唯一的ApplicationMaster所需的资源; 

(2)运行各类任务的Container:这是由ApplicationMaster向ResourceManager申请的,并由ApplicationMaster与NodeManager通信以启动之。 

以上两类Container可能在任意节点上,它们的位置通常而言是随机的,即ApplicationMaster可能与它管理的任务运行在一个节点上。 

Container是YARN中最重要的概念之一,懂得该概念对于理解YARN的资源模型至关重要,望大家好好理解。 

注意:如下图,map/reduce task是运行在Container之中的,所以上面提到的mapreduce.map(reduce).memory.mb大小都大于mapreduce.map(reduce).java.opts值的大小。

四、HDP平台参数调优建议

根据上面介绍的相关知识,我们就可以根据我们的实际情况作出相关参数的设置,当然还需要在运行测试过程中不断检验和调整。 

以下是hortonworks给出的配置建议: 

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.1/bk_installing_manually_book/content/rpm-chap1-11.html

4.1 内存分配

Reserved Memory = Reserved for stack memory + Reserved for HBase Memory (If HBase is on the same node) 

系统总内存126GB,预留给操作系统24GB,如果有Hbase再预留给Hbase24GB。 

下面的计算假设Datanode节点部署了Hbase。

4.2containers 计算:

MIN_CONTAINER_SIZE = 2048 MB

containers = min (2*CORES, 1.8*DISKS, (Total available RAM) / MIN_CONTAINER_SIZE)

\# of containers = min (2*12, 1.8*12, (78 * 1024) / 2048)

\# of containers = min (24,21.6,39)

\# of containers = 22


container 内存计算

RAM-per-container = max(MIN_CONTAINER_SIZE, (Total Available RAM) / containers))

RAM-per-container = max(2048, (78 * 1024) / 22))

RAM-per-container = 3630 MB


4.3Yarn 和 Mapreduce 参数配置:

yarn.nodemanager.resource.memory-mb = containers * RAM-per-container

yarn.scheduler.minimum-allocation-mb  = RAM-per-container

yarn.scheduler.maximum-allocation-mb  = containers * RAM-per-container

mapreduce.map.memory.mb          = RAM-per-container

mapreduce.reduce.memory.mb      = 2 * RAM-per-container

mapreduce.map.java.opts          = 0.8 * RAM-per-container

mapreduce.reduce.java.opts          = 0.8 * 2 * RAM-per-container

yarn.nodemanager.resource.memory-mb = 22 * 3630 MB

yarn.scheduler.minimum-allocation-mb    = 3630 MB

yarn.scheduler.maximum-allocation-mb    = 22 * 3630 MB

mapreduce.map.memory.mb            = 3630 MB

mapreduce.reduce.memory.mb        = 22 * 3630 MB

mapreduce.map.java.opts            = 0.8 * 3630 MB

mapreduce.reduce.java.opts            = 0.8 * 2 * 3630 MB


附:规整化因子介绍

为了易于管理资源和调度资源,Hadoop YARN内置了资源规整化算法,它规定了最小可申请资源量、最大可申请资源量和资源规整化因子,如果应用程序申请的资源量小于最小可申请资源量,则YARN会将其大小改为最小可申请量,也就是说,应用程序获得资源不会小于自己申请的资源,但也不一定相等;如果应用程序申请的资源量大于最大可申请资源量,则会抛出异常,无法申请成功;规整化因子是用来规整化应用程序资源的,应用程序申请的资源如果不是该因子的整数倍,则将被修改为最小的整数倍对应的值,公式为ceil(a/b)*b,其中a是应用程序申请的资源,b为规整化因子。 

比如,在yarn-site.xml中设置,相关参数如下:

yarn.scheduler.minimum-allocation-mb:最小可申请内存量,默认是1024

yarn.scheduler.minimum-allocation-vcores:最小可申请CPU数,默认是1

yarn.scheduler.maximum-allocation-mb:最大可申请内存量,默认是8096

yarn.scheduler.maximum-allocation-vcores:最大可申请CPU数,默认是4


对于规整化因子,不同调度器不同,具体如下: 

FIFO和Capacity Scheduler,规整化因子等于最小可申请资源量,不可单独配置。 

Fair Scheduler:规整化因子通过参数yarn.scheduler.increment-allocation-mb和yarn.scheduler.increment-allocation-vcores设置,默认是1024和1。 

通过以上介绍可知,应用程序申请到资源量可能大于资源申请的资源量,比如YARN的最小可申请资源内存量为1024,规整因子是1024,如果一个应用程序申请1500内存,则会得到2048内存,如果规整因子是512,则得到1536内存。


转自https://blog.csdn.net/suifeng3051/article/details/48135521

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容