①. 怎么推导(n->∞) ( 1 + 1/x )^x = e ?
②. 答: ln(1+1/x)^x = x·ln (1 + 1/x);
③. 令△x = 1/x, 当 x -> ∞时, △x -> 0;
④. 接② : x·ln(1 + 1/x) = (1/△x)·(ln(1 + △x) - ln1) = (ln(1 + △x) - ln1) / △x 注: ln1= 0, 就相当于没减;
⑤. 不难看出, ④中的最后得出的式子相当于求x=1时 lnx 的导数, 注: 求lnx的导数就是△x -> 0, (ln(x + △x) - lnx) / △x , ;
⑥. 大家都知道 lnx的导数是 1/x, 当x = 1 时, lnx的导数是1, 所以ln(1+1/x)^x = 1, 所以 (1+1/x)^x = e (x -> ∞)
注: 这也是计算e的值得方法, x的值越大, e的值越精确
怎么推导(n->∞) ( 1 + 1/x )^x = e
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 核心考点: (1)定义 4′ (2)计算 4′ (3)应用{中值定理、几何应用}10′ 一、定义(牛顿) 瞬间变化...