【Numpy】numpy的广播机制

广播的引出

numpy两个数组的相加、相减以及相乘都是对应元素之间的操作。

 import numpy as np
 
 x = np.array([[2,2,3],[1,2,3]])
 y = np.array([[1,1,3],[2,2,4]])
 print(x*y)  #numpy当中的数组相乘是对应元素的乘积,与线性代数当中的矩阵相乘不一样
 
 输入结果如下:
 '''
 [[ 2  2  9]
  [ 2  4 12]]
 '''

当两个数组的形状并不相同的时候,我们可以通过扩展数组的方法来实现相加、相减、相乘等操作,这种机制叫做广播(broadcasting)。

比如,一个二维数组减去列平均值,来对数组的每一列进行距平化处理:

 import numpy as np
 arr = np.random.randn(4,3)  #shape(4,3)
 arr_mean = arr.mean(0)      #shape(3,)
 demeaned = arr -arr_mean

很明显上式arr和arr_mean维度并不形同,但是它们可以进行相减操作,这就是通过广播机制来实现的。

广播的原则

广播的原则:如果两个数组的后缘维度(trailing dimension,即从末尾开始算起的维度)的轴长度相符,或其中的一方的长度为1,则认为它们是广播兼容的。广播会在缺失和(或)长度为1的维度上进行。

这句话乃是理解广播的核心。广播主要发生在两种情况,一种是两个数组的维数不相等,但是它们的后缘维度的轴长相符,另外一种是有一方的长度为1。

数组维度不同,后缘维度的轴长相符

我们来看一个例子:

  import numpy as np
 
 arr1 = np.array([[0, 0, 0],[1, 1, 1],[2, 2, 2], [3, 3, 3]])  #arr1.shape = (4,3)
 arr2 = np.array([1, 2, 3])    #arr2.shape = (3,)
 arr_sum = arr1 + arr2
 print(arr_sum)
 
 输入结果如下:
 '''
 [[1 2 3]
  [2 3 4]
 [3 4 5]
 [4 5 6]]
 '''

上例中arr1的shape为(4,3),arr2的shape为(3,)。可以说前者是二维的,而后者是一维的。但是它们的后缘维度相等,arr1的第二维长度为3,和arr2的维度相同。arr1和arr2的shape并不一样,但是它们可以执行相加操作,这就是通过广播完成的,在这个例子当中是将arr2沿着0轴进行扩展。

上面程序当中的广播如下图所示:

同样的例子还有:

从上面的图可以看到,(3,4,2)和(4,2)的维度是不相同的,前者为3维,后者为2维。但是它们后缘维度的轴长相同,都为(4,2),所以可以沿着0轴进行广播。

同样,还有一些例子:(4,2,3)和(2,3)是兼容的,(4,2,3)还和(3)是兼容的,后者需要在两个轴上面进行扩展。

数组维度相同,其中有个轴为1

我们来看下面的例子:

  import numpy as np
 
 arr1 = np.array([[0, 0, 0],[1, 1, 1],[2, 2, 2], [3, 3, 3]])  #arr1.shape = (4,3)
 arr2 = np.array([[1],[2],[3],[4]])    #arr2.shape = (4, 1)
 
 arr_sum = arr1 + arr2
 print(arr_sum)
 
 输出结果如下:
 [[1 1 1]
  [3 3 3]
  [5 5 5]
  [7 7 7]]

arr1的shape为(4,3),arr2的shape为(4,1),它们都是二维的,但是第二个数组在1轴上的长度为1,所以,可以在1轴上面进行广播,如下图所示:

在这种情况下,两个数组的维度要保证相等,其中有一个轴的长度为1,这样就会沿着长度为1的轴进行扩展。这样的例子还有:(4,6)和(1,6) 。(3,5,6)和(1,5,6)、(3,1,6)、(3,5,1),后面三个分别会沿着0轴,1轴,2轴进行广播。

后话:还有上面两种结合的情况,如(3,5,6)和(1,6)是可以相加的。在TensorFlow当中计算张量的时候也是用广播机制,并且和numpy的广播机制是一样的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容