4、tensorflow算数操作函数

TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU。一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测。如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.
并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进。大部分核相关的操作都是设备相关的实现,比如GPU。

下面是一些重要的操作/核:

操作组 操作
Maths Add Sub, Mul, Div, Exp, Log, Greater, Less, Equal
Array Concat Slice, Split, Constant, Rank, Shape, Shuffle
Matrix MatMul, MatrixInverse, MatrixDeterminant
Neuronal Network SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool
Checkpointing Save, Restore
Queues and syncronizations Enqueue, Dequeue, MutexAcquire, MutexRelease
Flow control Merge, Switch, Enter, Leave, NextIteration

TensorFlow的算术操作如下:

操作 描述
tf.add(x, y, name=None) 求和
tf.sub(x, y, name=None) 减法
tf.mul(x, y, name=None) 乘法
tf.div(x, y, name=None) 除法
tf.mod(x, y, name=None) 取模
tf.abs(x, name=None) 求绝对值
tf.neg(x, name=None) 取负 (y = -x).
tf.sign(x, name=None) 返回符号 y = sign(x) = -1 if x < 0; 0 if x == 0; 1 if x > 0.
tf.inv(x, name=None) 取反
tf.square(x, name=None) 计算平方 (y = x * x = x^2).
tf.round(x, name=None) 舍入最接近的整数# ‘a’ is [0.9, 2.5, 2.3, -4.4] tf.round(a) ==> [ 1.0, 3.0, 2.0, -4.0 ]
tf.sqrt(x, name=None) 开根号 (y = \sqrt{x} = x^{1/2}).
tf.pow(x, y, name=None) 幂次方 # tensor ‘x’ is [[2, 2], [3, 3]]# tensor ‘y’ is [[8, 16], [2, 3]] tf.pow(x, y) ==> [[256, 65536], [9, 27]]
tf.exp(x, name=None) 计算e的次方
tf.log(x, name=None) 计算log,一个输入计算e的ln,两输入以第二输入为底
tf.maximum(x, y, name=None) 返回最大值 (x > y ? x : y)
tf.minimum(x, y, name=None) 返回最小值 (x < y ? x : y)
tf.cos(x, name=None) 三角函数cosine
tf.sin(x, name=None) 三角函数sine
tf.tan(x, name=None) 三角函数tan
tf.atan(x, name=None) 三角函数ctan
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容