CPU下实时,最快人脸检测速度近2000FPS,这位硬核老师将训练代码开源了

在小分辨率下人脸检测速度1929.6FPS,支持5个关键点,支持导出为纯C++代码,不需要任何依赖库,这位南方科技大学的于仕琪老师刚刚把他的训练代码开源了!

Github训练代码链接:https://github.com/ShiqiYu/libfacedetection.train

Github推理代码:https://github.com/ShiqiYu/libfacedetection

来源:AIZOO

南方科技大学的于仕琪老师在19年开源了一个C++版本的人脸检测工程libfacedetection,该项目不依赖任何库,可以在CPU上达到实时。在VGA分辨率(640x480)下,在i7的CPU上可以达到72帧/秒,在128x96的输入分辨率下,速度更是高达1929帧/秒。

酷睿i7 CPU 推理速度


在树莓派3上的速度如下表所示,,在小分辨率下可以达到116FPS。​

树莓派3 推理速度


于老师将代码升级了三次,v2版本将模型参数量升级,并用8位量化加速,v3版本增加了五个关键点的检测,昨晚,于老师又将训练代码开源了。下面是于老师的三个版本的介绍以及开源训练代码的官网文章的链接:

开源啦,一个极快速的CNN人脸检测算法

算法升级!一个开源的极快速CNN人脸检测算法

算法升级!开源极快速CNN人脸检测新增人脸关键点功能

libfacedetection的PyTorch训练程序开源

通过查看于老师开源的训练代码,我们可以看到该模型是一个SSD类型的目标检测模型,一共有四个检测分支,Backbone网络共16层,模型非常轻量级,可以说与我们前几天开源的人脸口罩检测模型有异曲同工之妙呀。不过该模型使用一个PriorBox层生成anchor,可以做到任意大小的输入。这点我们在后面也会借鉴过去。

网络结构如下图所示,该模型是在下降8、16、32、64倍后的四个尺度的特征图上接入分类定位层,四个层每个点的anchor数目分别为3、2、2、3,所有anchor的长宽比都是1:1。

定位层参数

整体网络结构如下:

libfacedetection网络结构

该网络共有参数232万,可以说比较轻量级了。在RetinaFace中,作者也同样对每个人脸同时回归了五个关键点。于老师这里的做法与RetinaNet一样,也是对每个anchor在回归cx、cy、dw、dh四个bounding box偏移量时,额外再增加10个节点的输出,分别对应五个关键点的cx、cy偏移量。

另外,模型在推理的时候,也将Batch Norm层的参数融合进了卷积层,从而实现一定量的网络加速。关于BN层融合,笔者后面会写一篇文章简单介绍一下。

对于训练代码的解析,后面再补上。(欢迎在公众号AIZOO关注我们)

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 227,882评论 6 531
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 98,208评论 3 414
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 175,746评论 0 373
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 62,666评论 1 309
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 71,477评论 6 407
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 54,960评论 1 321
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,047评论 3 440
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,200评论 0 288
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 48,726评论 1 333
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 40,617评论 3 354
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 42,807评论 1 369
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,327评论 5 358
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,049评论 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,425评论 0 26
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 35,674评论 1 281
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 51,432评论 3 390
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 47,769评论 2 372

推荐阅读更多精彩内容