实现抖音闪烁效果---OpenCV-Python开发指南(54)

抖音视频闪烁原理

在抖音视频的抖动过程中,我们还可以发现其视频的颜色曝光度都发生了一些变化,并不是单纯的只有抖动效果。所以,本篇将来实现视频的闪烁效果。

而图像闪烁的原理,其实说白了就是其曝光度的变化。在更改视频曝光度的之前,我们需要认识一个OpenCV中新的函数:cv2.LTU()。

LUT就是Look Up Table(颜色查找表)的缩写,简单点儿理解就是:通过LUT,我们可以将一组RGB值输出为另一组RGB值,从而改变画面的曝光与色彩。LUT文件就是一个包含了可以改变输入颜色信息的矩阵数据。LUT本身并不进行运算,只需在其中列举一系列输入与输出数据即可,这些数据呈一一对应的关系,系统按照此对应关系为每一个输入值查找到与其对应的输出值,这样即可完成转换。

了解其具体是干什么的之后,我们再来看看其函数的定义:

def LUT(src, lut, dst=None):

src:需要曝光的图像array,类型必须是np.uin8类型

lut:查找表,如果输入src是多通道的,例如是BGR三通到的图像,而查表是单通道的,则此时B、G、R三个通道使用的是同一个查找表

dst:曝光后返回的图像

可以看出来,cv2.LTU()函数可以将一组RGB值输出为另一组RGB值,而这映射的规则,由程序员自己制定。

这里,我们还需要了解Gamma变化。

2.png

简单的来说,Gamma变换就是用来图像增强,其提升了暗部细节,就是通过非线性变换,让图像从曝光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正。

经过Gamma变换后的输入和输出图像灰度值关系如图1所示:横坐标是输入灰度值,纵坐标是输出灰度值,蓝色曲线是gamma值小于1时的输入输出关系,红色曲线是gamma值大于1时的输入输出关系。可以观察到,当gamma值小于1时(蓝色曲线),图像的整体亮度值得到提升,同时低灰度处的对比度得到增加,更利于分辩低灰度值时的图像细节。因此设置Gamme参数可以控制图像的曝光度,在0-1时会造成图像过度曝光。

1.png

实现抖音视频闪烁

了解了视频闪烁曝光的原理。下面,我们直接来实现其效果,具体代码如下所示:

#曝光图片
def exposure_effect(img, gamma):
    gamma_table = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)]
    gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)
    return cv2.LUT(img, gamma_table)


if __name__ == "__main__":
    cap = cv2.VideoCapture("45.mp4")
    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    i = 1
    count = 5
    fourcc = cv2.VideoWriter_fourcc(*'MJPG')
    videoWriter = cv2.VideoWriter("output.avi", fourcc, fps, (width, height))
    while (cap.isOpened()):
        ret, frame = cap.read()
        if ret:
            if (i % 5 == 0 or 0 < count < 5):
                frame = exposure_effect(video_shake_effect(frame), 0.5)
                videoWriter.write(frame)
            else:
                count = 5
                cv2.imshow('video', frame)
                videoWriter.write(frame)
            i += 1
            c = cv2.waitKey(1)
            if c == 27:
                break
        else:
            break
    cap.release()
    videoWriter.release()
    cv2.destroyAllWindows()

这里,我们将前文的抖动与今天讲解的闪烁进行结合,最后观察其效果:


output_1.gif

其中gamma_table = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)]曝光度的算法,但其值有浮点数,而图像是不允许有浮点数存在的,所以通过np.round四舍五入,然后将其转换为LTU的第一个参数类型输入值。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容