方差分析中两两比较方法的选择

如果多组间比较认为总体上有统计学差异,通常还可以进一步做组间两两比较。两两比较的方法有很多,SPSS就提供了20余中,多到令人尴尬,令人不知如何选择。

两两比较.png

常用的两两比较方法

  • LSD:实际上是 t 检验的改进,在变异和自由度的计算上利用了整个样本信息,而不仅仅是比较两组的信息。它的敏感度最高,在比较时仍然存在放大α水准(一类错误)的问题,换言之就是总的二类错误非常小,要是LSD法都没有检验出有差别,恐怕真的没差别了。

  • Bonferroni:由 LSD 法修正而来,通过调整每个检验的α水准来控制总的α水准,最终保证总的α水准为0.05,该方法敏感度介于 LSD 法和 Scheffe 法之间。

  • S-N-K:即 Student Newman Keuls 法,是应用最广泛的一种两两比较方法。它采用Student-Range 分布进行所有组均值间的配对比较。该方法保证在H0真正成立时总的α水准等于实际设定值,即控制了一类错误。

  • TUKEY:即 Tukey's honestly significant difference 法(Tukey’s HSD),采用 Student-Range 统计量进行所有组间的两两比较。但与 S-N-K 法不同的是,它控制的所有比较组中最大的一类错误概率不超过α水准。

  • Scheffe:当各组人数不相等,或者想进行复杂比较时,用此法较为稳妥。它检验的是各个均数的线性组合,而不是只检验某一对均数间的差异,并控制总体的α水准等于0.05。正因如此,它相对比较保守,有时候方差分析F值差异有统计学意义,用该法做两两比较也找不出差异来。

  • Dunnett:主要用于多个实验组与一个对照组的比较,实验组之间不做比较。

如何选择两两比较方法

如何在如此之多的两两比较方法中选出合适的方法是一个令人头痛的问题。由于 S-N-K 法的结果阅读非常方便。以前国内都以 S-N-K 法最常用,但根据近年来的研究发现,当两两比较的次数极多时,该方法的假阳性非常高,因此当比较次数较多时(例如有10组作两两比较,则比较次数会有45次),对用S-N-K法得到的有统计学意义的结论要谨慎一些。

根据相关研究的检索结果,除了参照所研究领域的惯例外,一般可以参照的标准为:

  • 如果存在明确的对照组,要进行验证性研究,即计划好的某两个或几个组间(和对照组)的比较,适宜用 Bonferroni(LSD)法;
  • 若需要进行多个均数间的两两比较(探索性研究)且各组人数相等,适宜用 Tukey法;
  • 其它情况适宜用Scheffe法。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容