深度学习知识点汇总-目标检测(1)

8.1 R-FCN

R-FCN属于two-stage的目标检测算法。

  • backbone部分RPN,这里使用ResNet。
  • head部分R-FCN,使用全连接网络。

其中ResNet-101 + R-FCN的方法在PASCAL VOC 2007测试数据集的mmAP达到83.6%。

图1 人脸检测

R-FCN的核心思想

  • 得到目标多个特征。
    假设我们只有一个特征图用来检测右眼。那么我们可以使用它定位人脸吗?应该可以。因为右眼应该在人脸图像的左上角,所以我们可以利用这一点定位整个人脸。如果我们还有其他用来检测左眼、鼻子或嘴巴的特征图,那么我们可以将检测结果结合起来,更好地定位人脸。
  • 使用全卷积网络提高推理速度
    在Faster R-CNN中,检测器使用了多个全连接层进行预测。如果有2000个ROI,那么成本非常高。R-FCN通过减少每个ROI所需的工作量实现加速。上面基于区域的特征图与ROI是独立的,可以在每个ROI之外单独计算。剩下的工作就比较简单了,因此R-FCN的速度比Faster R-CNN快。
图2 检测示意图

现在我们来看一下5\times5的特征图M,内部包含一个灰色方块。我们将方块平均分成3×3个区域。在M中创建了一个新的特征图,来检测方块的左上角(TL)。这个新的特征图如图2(右)所示。只有绿色的网格单元[2,2]处于激活状态。

图3 生成9个得分图

我们将方块分成9个部分,由此创建了9个特征图,每个用来检测对应的目标区域。这些特征图叫做位置敏感得分图(position-sensitive score map),因为每个图检测目标的子区域(计算其得分)。

图4 vote_array

图4中红色虚线矩形是建议的ROI。我们将其分割成3×3个区域,并询问每个区域包含目标对应部分的概率是多少。例如,左上角ROI区域包含左眼的概率。我们将结果存储成3×3 vote数组,如图4(右)所示。例如,vote_array[0][0]包含左上角区域是否包含目标对应部分的得分。

图5 position-sensitive ROI-pool

将ROI应用到特征图上,输出一个3x3数组。将得分图和ROI映射到vote数组的过程叫做位置敏感ROI池化(position-sensitive ROI-pool)。

图6 ROI池化

将ROI的一部分叠加到对应的得分图上,计算V[i][j]。在计算出位置敏感ROI池化的所有值后,类别得分是其所有元素得分的平均值。

图7 R-FCN数据流图

假如我们有C个类别要检测。我们将其扩展为C+1个类别,这样就为背景(非目标)增加了一个新的类别。每个类别有3×3个得分图,因此一共有(C+1)×3×3个得分图。使用每个类别的得分图可以预测出该类别的类别得分。然后我们对这些得分应用 softmax 函数,计算出每个类别的概率。以下是数据流图,在本案例中,k=3。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容