Numpy数据存取与函数

数据的CSV文件存取

CSV只能有效存储一维和二维数组np.savetxt() np.loadtxt()只能有效存取一维和二维数组

np.savetxt(frame, array, fmt='%.18e', delimiter=None)

  • frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件
  • array : 存入文件的数组
  • fmt : 写入文件的格式,例如:%d %.2f %.18e
  • delimiter : 分割字符串,默认是任何空格
>>> import numpy as np
>>> a = np.arange(100).reshape(5,20)
>>> np.savetxt('a.csv', a, fmt='%.1f', delimiter=',')

np.loadtxt(frame, dtype=np.float, delimiter=None, unpack=False)

  • frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件
  • dtype : 数据类型,可选
  • delimiter : 分割字符串,默认是任何空格
  • unpack : 如果True,读入属性将分别写入不同变量
>>> b = np.loadtxt('a.csv',delimiter=',')
>>> b
array([[  0.,   1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.,  10.,
         11.,  12.,  13.,  14.,  15.,  16.,  17.,  18.,  19.],
       [ 20.,  21.,  22.,  23.,  24.,  25.,  26.,  27.,  28.,  29.,  30.,
         31.,  32.,  33.,  34.,  35.,  36.,  37.,  38.,  39.],
       [ 40.,  41.,  42.,  43.,  44.,  45.,  46.,  47.,  48.,  49.,  50.,
         51.,  52.,  53.,  54.,  55.,  56.,  57.,  58.,  59.],
       [ 60.,  61.,  62.,  63.,  64.,  65.,  66.,  67.,  68.,  69.,  70.,
         71.,  72.,  73.,  74.,  75.,  76.,  77.,  78.,  79.],
       [ 80.,  81.,  82.,  83.,  84.,  85.,  86.,  87.,  88.,  89.,  90.,
         91.,  92.,  93.,  94.,  95.,  96.,  97.,  98.,  99.]])
>>> b = np.loadtxt('a.csv',delimiter=',', dtype=np.int)
>>> b
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
        17, 18, 19],
       [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
        37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
        57, 58, 59],
       [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
        77, 78, 79],
       [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
        97, 98, 99]])

多维数据的存取

该方法需要读取时知道存入文件时数组的维度和元素类型a.tofile()和np.fromfile()需要配合使用可以通过元数据文件来存储额外信息

a.tofile(frame, sep='', format='%s')

  • frame : 文件、字符串
  • sep : 数据分割字符串,如果是空串,写入文件为二进制
  • format : 写入数据的格式
>>> a.tofile('b.dat', sep=',',format='%d')

np.fromfile(frame, dtype=float, count=‐1, sep='')

  • frame : 文件、字符串
  • dtype : 读取的数据类型
  • count : 读入元素个数,‐1表示读入整个文件
  • sep : 数据分割字符串,如果是空串,写入文件为二进制
>>> np.fromfile(a, dtype=float, sep='')

NumPy的便捷文件存取

np.save(fname, array) 或 np.savez(fname, array)

  • fname : 文件名,以.npy为扩展名,压缩扩展名为.npz
  • array : 数组变量

np.load(fname)

  • fname : 文件名,以.npy为扩展名,压缩扩展名为.npz
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353

推荐阅读更多精彩内容