Gensim Tutorials

Preliminaries

All the examples can be directly copied to your Python interpreter shell.IPython‘scpastecommand is especially handy for copypasting code fragments, including the leading>>>characters.

Gensim uses Python’s standardloggingmodule to log various stuff at various priority levels; to activate logging (this is optional), run

import logging

logging.basicConfig(format='%(asctime)s : %(levelname) : %(message)s', level=logging.INFO)

Quick Example

First, let’s import gensim and create a small corpus of nine documents and twelve features[1]:

from gensim import corpora,models,similarities

corpus = [[(0, 1.0), (1, 1.0), (2, 1.0)],

[(2, 1.0), (3, 1.0), (4, 1.0), (5, 1.0), (6, 1.0), (8, 1.0)],

[(1, 1.0), (3, 1.0), (4, 1.0), (7, 1.0)],

[(0, 1.0), (4, 2.0), (7, 1.0)],

[(3, 1.0), (5, 1.0), (6, 1.0)],

[(9, 1.0)],

[(9, 1.0), (10, 1.0)],

[(9, 1.0), (10, 1.0), (11, 1.0)],

[(8, 1.0), (10, 1.0), (11, 1.0)]]

Ingensimacorpusis simply an object which, when iterated over, returns its documents represented as sparse vectors. In this case we’re using a list of list of tuples. If you’re not familiar with thevector space model, we’ll bridge the gap betweenraw strings,corporaandsparse vectorsin the next tutorial onCorpora and Vector Spaces.

If you’re familiar with the vector space model, you’ll probably know that the way you parse your documents and convert them to vectors has major impact on the quality of any subsequent applications.

In this example, the whole corpus is stored in memory, as a Python list. However, the corpus interface only dictates that a corpus must support iteration over its constituent documents. For very large corpora, it is advantageous to keep the corpus on disk, and access its documents sequentially, one at a time. All the operations and transformations are implemented in such a way that makes them independent of the size of the corpus, memory-wise.

Next, let’s initialize atransformation:

tfidf_model = models.TfidfModel(corpus)

A transformation is used to convert documents from one vector representation into another:

vec = [(0,1),(4,1)]

print(tfidf_model[vec])# 此处使用中括号

Here, we usedTf-Idf, a simple transformation which takes documents represented as bag-of-words counts and applies a weighting which discounts common terms (or, equivalently, promotes rare terms). It also scales the resulting vector to unit length (in theEuclidean norm).

Transformations are covered in detail in the tutorial onTopics and Transformations.

To transform the whole corpus via TfIdf and index it, in preparation for similarity queries:

index = similarities.SparseMatrixSimilarity(tfidf_model[corpus], num_features=12)

and to query the similarity of our query vector against every document in the corpus:

sims = index[tfidf_model[vec]]

print(list(enumerate(sims)))

[(0, 0.4662244), (1, 0.19139354), (2, 0.24600551), (3, 0.82094586), (4, 0.0), (5, 0.0), (6, 0.0), (7, 0.0), (8, 0.0)]

How to read this output? Document number zero (the first document) has a similarity score of 0.466=46.6%, the second document has a similarity score of 19.1% etc.

Thus, according to TfIdf document representation and cosine similarity measure, the most similar to our query documentvecis document no. 3, with a similarity score of 82.1%. Note that in the TfIdf representation, any documents which do not share any common features with at all (documents no. 4–8) get a similarity score of 0.0. See theSimilarity Queriestutorial for more detail.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容

  • 八.嵌套-选择器嵌套 Sass 的嵌套分为三种: 选择器嵌套 属性嵌套 伪类嵌套 html 结构: 选中 h...
    芹菜斯_嘉丽阅读 391评论 0 0
  • 席罢天雨织帘,蹒跚懒睁倦眼。寂寂残灯映狂士,吠犬汪汪讨嫌。 锦衣辗转湿透,罗袜翩跹不免。路畔蛙声忽成片,敢是听取丰年?
    郭国酬阅读 174评论 0 4
  • 2017年8月10日,如是家人黄愈惠,第10天种种子修行日志 发心:我今不是为了我个人而闻思修,而是为了六道轮回一...
    愈惠阅读 138评论 0 3