Keras实现U-Net网络结构

import keras
from keras import layers


def U_netModel(num_classes,input_shape=(512,512,1)):
    inputs = layers.Input(shape=input_shape)
    conv1_1 = layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(inputs)
    conv1_2 = layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(conv1_1)
    pool1 = layers.MaxPooling2D(pool_size=(2,2))(conv1_2)

    conv2_1 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool1)
    conv2_2 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv2_1)
    pool2 = layers.MaxPooling2D(pool_size=(2,2))(conv2_2)

    conv3_1 = layers.Conv2D(filters=256, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool2)
    conv3_2 = layers.Conv2D(filters=256, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv3_1)
    pool3 = layers.MaxPooling2D(pool_size=(2,2))(conv3_2)

    conv4_1 = layers.Conv2D(filters=512, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool3)
    conv4_2 = layers.Conv2D(filters=512, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv4_1)
    pool4 = layers.MaxPooling2D(pool_size=(2, 2))(conv4_2)

    conv5_1 = layers.Conv2D(filters=1024, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool4)
    conv5_2 = layers.Conv2D(filters=1024, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv5_1)

    deconv6_up = layers.Conv2D(filters=512,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2,2))(conv5_2))
    merge6 = layers.concatenate([conv4_2,deconv6_up])
    deconv6_1 = layers.Conv2D(filters=512,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(merge6)
    deconv6_2 = layers.Conv2D(filters=512,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(deconv6_1)

    deconv7_up = layers.Conv2D(filters=256,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2,2))(deconv6_2))
    merge7 = layers.concatenate([conv3_2,deconv7_up])
    deconv7_1 = layers.Conv2D(filters=256,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(merge7)
    deconv7_2 = layers.Conv2D(filters=256,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(deconv7_1)

    deconv8_up = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2, 2))(deconv7_2))
    merge8 = layers.concatenate([conv2_2, deconv8_up])
    deconv8_1 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal", activation="relu")(merge8)
    deconv8_2 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(deconv8_1)

    deconv9_up = layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2, 2))(deconv8_2))
    merge9 = layers.concatenate([conv1_2, deconv9_up])
    deconv9_1 = layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(merge9)
    deconv9_2 = layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(deconv9_1)
    ###########num_classes的值根据有多少类别决定
    ###########激活函数sigmoid,因为labels是用one_hot编码
    outputs = layers.Conv2D(filters=num_classes, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="sigmoid")(deconv9_2)

    model = keras.models.Model(inputs=inputs,outputs=outputs)

    return model

model = U_netModel(2)
print(model.summary())
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容