《大数据时代》笔记No.1:这个时代到底哪里变了?

在人类的绝大多数研究机构中,我们过去往往假设,所获的信息都是小的、精确的、可以推测因果的。但是世界变了,因为数据变得巨大、处理飞快和非精确。雪上加霜的是,这些数据基本都由机器处理和作出预测。

千禧一代大都接受这样的改变。过去的执政者曾经担心过科技会暴露过多隐私,所以建设了一套管理机制(事实上互联网的早期设计者的确“不太尊重”传统的隐私和知识产权)。作者声称人们是愿意分享在线上分享个人信息的,他说这是一个“数据”的服务特性。

与此同时,数据分析的危险性从隐私权转移到了“非确定性”(原文probability):算法会预测一个可能性——你得心脏病的可能性,被给予贷款的可能性,甚至是犯罪的可能性。这导致了一个“伦理”性的问题关于人的直觉和数据的预测,如果人所认为的数据所说的相左该怎么办?

In many ways, the way we control and handle data will have to change. We're entering a world of constant datapdriven predictions where we may not be able to explain the reasons behind our decisions. What does it mean if a doctor cannot justify a medical intervention without asking the patient to defer to a black box, as the physician must do when relying on a big-data-driven diagnosis? Will the judicial system's standard of "probable cause" need to change to "probabilistic cause" - and if so, what are the implications of this for human freedom and dignity?

New principles are needed for the age of big data, which we lay out in Ch.9. Although they build upon the values that were developed and enshrined for the world of small data, it's not simply a matter of refreshing old rules for new circumstances, but recognizing the need for new principles altogether.

The benefits to society will be myriad, as big data becomes part of the solution to pressing global problems like addressing climate change, eradicating disease, and fostering good governance and economic development. But the big-data era also challenges us to become better prepared for the ways in which harnessing the technology will change our institutions and ourselves.

Big data marks an import step in humankind's quest to quantify and understand the world. A preponderance of things that could never be measured, stored, analyzed, and shred before is becoming datafied. Harnessing vast quantities of data rather than small portion, and privileging more data of less exactitude, opens the door to new ways of understanding. It leads society to abandon its time-honored preference for causality, and in many instances tap the benefits of correlation.

The ideal of identifying causal mechanisms is a selfp-congratulatoryillusion; big data overturns this. Yet again we are at a historical impasse where "god is dead". That is to say, the certainties that we believed in are once again changing. But this time they are being replaced, ironically, by better evidence. What role is left for intuition, faith, uncertainty, acting in contradiction of the evidence, and learning by experience? As the world shifts from causation to correlation, how can we pragmatically move forward without undermining the very foundations to explain where we are, trace how we got here, and offer an urgently needed guide to the benefits and dangers that lie ahead.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容