对《一次函数的图像》之我见

        2018年7月18日,今天嘉黎县中学数学组在上午第二节课开展一次教研活动,由新教师其美次珍开公开课《一次函数的图像》。

图片发自简书App
图片发自简书App

        本人听了这节课,针对这节课的结构、重难点、板书、氛围、细节和闪光点等反思一下,本人认为一节数学课,教师需要规范性、示范性、严谨性,要关注学生,以生为本。教师在课堂上是导演,学生是演员;教师在课堂上是导游,学生是游客;教师在课堂上是主持人,学生是观众等。教师应该是多种角色的混合体,而不能唱独角戏,应该与学生交流、交往、交融。本人根据这节课的内容和教学目标,也设计了一个教案,供大家参考。

      《一次函数的图像的教学设计

师:我们这一章内容学什么?

学生齐声回答:一次函数。

师:请学生举一个比例系数k = 2的一次函数解析式的例子,请举手发言。

        教师请五、六个学生发言,其中一个学生提到y= 2x,教师追问:请问同学,这是一次函数吗?

学生:它是正比例函数,是一次函数的特殊形式。

师:上节课我们学习了正比例的图像,它是一条直线,今天我们来画画一次函数的图像。请同学们画一次函数y= 2x - 1的图像。请问同学们用什么方法?(同时,教师立即发下一张学习任务单)

图片发自简书App

学生:用描点法。(因为上节课画正比例函数图像已用描点法画图,所以不细讲)

同学们可以两人一组(同桌合作)画图,并请其中一组同学板演。同时教师下来巡视,个别指导。等大部分同学都已完成(包括板演的同学),教师请同学们观察板演的同学的正确性,如果不正确的话,请其他同学纠正。

图片发自简书App

教师:同学们,看一次函数y= 2x - 1的图像有什么发现?

学生1:它的图像是一条直线。

学生2:它不经过原点。

学生3:它与y轴交点为( 0,1),与x轴交点为( - 0.5,0)。

学生4:因为它的图像是一条直线,所以取两点来画图,更简便。

教师:回答的很好,可以用两点作图,那取哪两个点来画呢?

学生5:随便取。

学生6:我认为取与两坐标轴的交点更好画。

教师:为这个学生鼓掌,画一次函数的图像有描点法,两点法,但取与两坐标轴的交点来画更简便。

教师再追问:还有什么发现?

学生:因为k=2,所以图像y= 2x - 1的函数值y随x的增大而增大,这好像与正比例函数的性质一样。

教师:是吗?

学生们一致认同。

接下来,请同学们在同一个坐标系中画出y= 2x,y= - 0.5x + 1(在学习任务单上画),同时请一位同学板演。教师巡视,等大部分同学都画好之后,请四人小组同学思考并讨论以下问题:

(1)认真检查了吗?

(2)同学之间是否有不同的画法?谁的方法更好?

(3)通过图像,我还发现什么?

(4)准备发言了吗?

接着,教师请学生发言 ,谈画法及新发现。

图片发自简书App

学生1:我们组认为用两点法画这条直线较快画出。

学生2:我们组发现图像y= 2x与y= 2x - 1两条直线平行,图像y= 2x与y= - 0.5x + 1两条直线相交。

学生3:我补充一下,我们组认为当比例系数k相同时,两条一次函数直线平行;当比例系数k不同时,两条一次函数直线不平行。

学生4:我们组还发现,当k>0时,一次函数y随x增大而增大;当k.<0时,一次函数y随x增大而减少。

教师:同学们,真棒,发现这么多。还有其它想法吗?

学生5:一次函数y= 2x - 1的图像经过一、三、四象限;一次函数y= 2x的图像经过一、三象限;一次函数y= - 0.5 x + 1的图像经过一、二、四象限。

学生6:是否可以这样讲,当k>0时,一次函数图像一定经过一、三象限;当k<0时,一次函数图像经过二、四象限。

教师:同学们认为呢?

教师环视一周,大部分同学认可。

教师再追问:一次函数图像受k影响,那跟其它因素还有关系吗?

学生7:还受b影响,我认为b的数值就是y轴上的点,点(0,b)就是一次函数与y轴的交点。从一次函数y=2x-1的图像经过一、三、四象限;一次函数y= - 0.5 x + 1的图像经过一、二、四象限可知:当k>0,b<0时,图像经过一、三、四象限;当k<0,b>0时,图像经过一、二、四象限。

教师再追问:当k>0,b>0时,图像经过第几象限;当k<0,b<0时,图像经过第几象限。(如果没时间的话,这个问题可以当今天回家的作业)

几分钟后,终于有一个学生举手。

学生8:我来举一个例子,如一次函数y= 2x + 1的图像通过画草图得到经过一、二、三象限;一次函数y= - 0.5x  - 1的图像通过画草图得到经过一、三、四象限可知:当k>0,b>0时,图像经过第几象限;当k<0,b<0时,图像经过第几象限。

教师看见大部分同学反应不过来,于是让四人小组合作画图并谈论。给学生足够的时间,同学们发现同样的结论。

教师看看时间快接近尾声,于是,请学生们谈谈今天这节课的收获。

当学生们谈完收获之后,教师说:“这节课同学们表现都很好,谁还有问题或疑惑请提出”

一个学生抓抓头皮,说:我通过量角器测量得,y=2x-1与y=0.5x+1两条直线夹角是90度,请问在什么情况下,两条一次函数图像夹角会是直角?

教师:这个问题提的非常好,思考数学题应该有三层境界,第一层境界是一题多解(找出最佳解法);第二层境界是多题一解(归纳思维);第三层境界是提出新问题(创新思维),也就是编题。由于时间关系,请同学们下课思考这个问题,看谁是我们班的小数学家。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容