spark常见问题分析

分析

spark常见的问题不外乎oom:

我们首先看一下Spark 的内存模型:

Spark在一个Executor中的内存分为三块,一块是execution内存,一块是storage内存,一块是other内存。

execution内存是执行内存,文档中说join,aggregate都在这部分内存中执行,shuffle的数据也会先缓存在这个内存中,满了再写入磁盘,能够减少IO。其实map过程也是在这个内存中执行的。

storage内存是存储broadcast,cache,persist数据的地方。

other内存是程序执行时预留给自己的内存。

OOM的问题通常出现在execution这块内存中,因为storage这块内存在存放数据满了之后,会直接丢弃内存中旧的数据,对性能有影响但是不会有OOM的问题。

Spark中的OOM问题不外乎以下三种情况

map执行中内存溢出
shuffle后内存溢出
driver内存溢出
前两种情况发生在executor中,最后情况发生在driver中

我们针对每种情况具体分析

Driver heap:

Driver heap OOM的三大原因:
(1).用户在Driver端口生成大对象, 比如创建了一个大的集合数据结构
解决思路:
1.1. 考虑将该大对象转化成Executor端加载. 例如调用sc.textFile/sc.hadoopFile等
1.2. 如若无法避免, 自我评估该大对象占用的内存, 相应增加driver-memory的值
(2).从Executor端收集数据回Driver端
比如Collect. 某个Stage中Executor端发回的所有数据量不能超过spark.driver.maxResultSize,默认1g. 如果用户增加该值, 请对应增加2delta increase到Driver Memory, resultSize该值只是数据序列化之后的Size, 如果是Collect的操作会将这些数据反序列化收集, 此时真正所需内存需要膨胀2-5倍, 甚至10倍.
解决思路:
2.1. 本身不建议将大的数据从Executor端, collect回来. 建议将Driver端对collect回来的数据所做的操作, 转化成Executor端RDD操作.
2.2. 如若无法避免, 自我评collect需要的内存, 相应增加driver-memory的值
(3)Spark本身框架的数据消耗.
现在在Spark1.6版本之后主要由Spark UI数据消耗, 取决于作业的累计Task个数.
解决思路:
3.1. 考虑缩小大numPartitions的Stage的partition个数, 例如从HDFS load的partitions一般自动计算, 但是后续用户的操作中做了过滤等操作已经大大减少数据量, 此时可以缩小Parititions。
3.2. 通过参数spark.ui.retainedStages(默认1000)/spark.ui.retainedJobs(默认1000)控制.
3.3. 实在没法避免, 相应增加内存.

Executor heap:

map过程产生大量对象导致内存溢出:
数据倾斜导致内存溢出:
coalesce调用导致内存溢出:
shuffle后内存溢出:
(1) reduce oom?
原因:reduce task 去map端获取数据,reduce一边拉取数据一边聚合,reduce端有一块聚合内存(executor memory * 0.2),也就是这块内存不够
解决方法:
1.增加reduce 聚合操作的内存的比例
2.增加Executor memory的大小 --executor-memory 5G
3.减少reduce task每次拉取的数据量 设置spak.reducer.maxSizeInFlight 24m, 拉取的次数就多了,因此建立连接的次数增多,有可能会连接不上(正好赶上map task端进行GC)

(2) shuffle file cannot find or executor lost?
解决方法:
当出现以下异常时:shuffle file cannot find,executor lost、task lost,out of memory,可以调节

(3) Executor的堆外内存大小
问题原因:
1.map task所运行的executor内存不足,导致executor
挂掉了,executor里面的BlockManager就挂掉了,导致ConnectionManager不能用,也就无法建立连接,从而不能拉取数据
2.executor并没有挂掉
2.1 BlockManage之间的连接失败(map task所运行的executor正在GC)
2.2建立连接成功,map task所运行的executor正在GC
3.reduce task向Driver中的MapOutputTracker获取shuffle file位置的时候出现了问题
解决方法:
1.增大Executor内存(即堆内内存) ,申请的堆外内存也会随之增加--executor-memory 5G
2.增大堆外内存 --conf spark.yarn.executor.memoryoverhead 2048M
--conf spark.executor.memoryoverhead 2048M
(默认申请的堆外内存是Executor内存的10%,真正处理大数据的时候,这里都会出现问题,导致spark作业反复崩溃,无法运行;此时就会去调节这个参数,到至少1G(1024M),甚至说2G、4G)

注:在shuffle过程中可调的参数:

spark.shuffle.file.buffer
默认值:32k
参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
注:shuffle中有以下操作会使用到该参数:map端:spill、合并文件时

spark.reducer.maxSizeInFlight
默认值:48m
参数说明:该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
错误:reduce oom
reduce task去map拉数据,reduce 一边拉数据一边聚合 reduce段有一块聚合内存(executor memory * 0.2)
解决办法:1、增加reduce 聚合的内存的比例 设置spark.shuffle.memoryFraction
2、 增加executor memory的大小 --executor-memory 5G
3、减少reduce task每次拉取的数据量 设置spark.reducer.maxSizeInFlight 24m

spark.shuffle.io.maxRetries
默认值:3
参数说明:shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。
调优建议:对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。
shuffle file not find taskScheduler不负责重试task,由DAGScheduler负责重试stage

spark.shuffle.io.retryWait
默认值:5s
参数说明:具体解释同上,该参数代表了每次重试拉取数据的等待间隔,默认是5s。
调优建议:建议加大间隔时长(比如60s),以增加shuffle操作的稳定性。

spark.shuffle.memoryFraction
默认值:0.2
参数说明:该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例,默认是20%。
调优建议:在资源参数调优中讲解过这个参数。如果内存充足,而且很少使用持久化操作,建议调高这个比例,给shuffle read的聚合操作更多内存,以避免由于内存不足导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%左右。

spark.shuffle.manager
默认值:sort
参数说明:该参数用于设置ShuffleManager的类型。Spark 1.5以后,有三个可选项:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默认选项,但是Spark 1.2以及之后的版本默认都是SortShuffleManager了。tungsten-sort与sort类似,但是使用了tungsten计划中的堆外内存管理机制,内存使用效率更高。
调优建议:由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这里要注意的是,tungsten-sort要慎用,因为之前发现了一些相应的bug。

spark.shuffle.sort.bypassMergeThreshold
默认值:200
参数说明:当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。

spark.shuffle.consolidateFiles
默认值:false
参数说明:如果使用HashShuffleManager,该参数有效。如果设置为true,那么就会开启consolidate机制,会大幅度合并shuffle write的输出文件,对于shuffle read task数量特别多的情况下,这种方法可以极大地减少磁盘IO开销,提升性能。
调优建议:如果的确不需要SortShuffleManager的排序机制,那么除了使用bypass机制,还可以尝试将spark.shffle.manager参数手动指定为hash,使用HashShuffleManager,同时开启consolidate机制。在实践中尝试过,发现其性能比开启了bypass机制的SortShuffleManager要高出10%~30%。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容

  • 1、 性能调优 1.1、 分配更多资源 1.1.1、分配哪些资源? Executor的数量 每个Executor所...
    Frank_8942阅读 4,534评论 2 36
  • 1.1、 分配更多资源 1.1.1、分配哪些资源? Executor的数量 每个Executor所能分配的CPU数...
    miss幸运阅读 3,179评论 3 15
  • Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AM...
    大佛爱读书阅读 2,824评论 0 20
  • spark-submit的时候如何引入外部jar包 在通过spark-submit提交任务时,可以通过添加配置参数...
    博弈史密斯阅读 2,738评论 1 14
  • Kafka是什么 Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多订阅者,基于zoo...
    Andone1cc阅读 281评论 0 1