tensorflow分布式训练ps负载不均衡问题

在使用euler0.1.2框架分布式训练GCN的工作中,遇到了这样一个问题:

  • 在使用多个ps时,其中一个ps承载了大部分的参数,而其余的ps都在“划水”
  • 当gcn的节点数量以及参数数量变多以后,ps的内存上限会成为训练的瓶颈,因为无法通过增加ps的数量,来放置增多的参数

好心的同事告诉了我这样一个方法:可以通过分割参数,来达到平均分配到每个ps的目的。具体实现,借助了tensorflow的两个接口:

  • tf.fixed_size_paritioner
  • tf.get_variable

参考博客:
https://blog.csdn.net/u013431916/article/details/80330813
https://moontree.github.io/2020/09/07/tf-embedding-lookup/

1.看下面的代码:

cluster = tf.train.ClusterSpec({
      'ps': flags_obj.ps_hosts,
      'worker': flags_obj.worker_hosts
  })
  server = tf.train.Server(
      cluster, job_name=flags_obj.job_name, task_index=flags_obj.task_index)

  if flags_obj.job_name == 'ps':
    server.join()
  elif flags_obj.job_name == 'worker':
    with tf.device(
        tf.train.replica_device_setter(
            worker_device='/job:worker/task:%d' % flags_obj.task_index,
            cluster=cluster):
     partitioner = tf.fixed_size_paritioner(num_ps, axix=0)
     embeddings = tf.get_variable(
        'embeddings',
        shape=[num, dim],
        initializer=tf.truncated_normal_initializer(),
        partitioner=partitioner)

遗憾的是,问题并没有得到解决

2.继续查询资料,发现tf.train.replica_device_setter这个函数主要实现变量在ps上初始化,其中提供了一个参数ps_strategy,即变量初始化的策略,这参数是可选的,不填的话默认循环去初始化。而官方提供的初始化策略还有两种:
2.1 随机初始化:tf.contrib.training.RandomStrategy
2.2 初始化时,每次选负载最小的ps分配参数(GLBS):
tf.contrib.training.GreedyLoadBalancingStrategy

参考博客:https://blog.csdn.net/u012133034/article/details/81167040

采用GLBS策略,理论上是更合理的方式,遗憾的是问题还没解决

3.分析之后,发现之前是按照ps的数量还决定参数划分的份数,可能粒度还是太大,于是将分割的份数设为1000,至此,问题解决

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,366评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,521评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,689评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,925评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,942评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,727评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,447评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,349评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,820评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,990评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,127评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,812评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,471评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,017评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,142评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,388评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,066评论 2 355