Flink实战之Flink SQL中的Map、Array、Row

Flink sql支持Map、Array、Row类型,这几种类型在DDL中如何定义、如何获取、如何构造,本文做个总结。

以如下数据作为样例:

{
    "id":1238123899121,
    "name":"asdlkjasjkdla998y1122",
    "date":"1990-10-14",
    "obj":{
        "time1":"12:12:43Z",
        "str":"sfasfafs",
        "lg":2324342345
    },
    "arr":[
        {
            "f1":"f1str11",
            "f2":134
        },
        {
            "f1":"f1str22",
            "f2":555
        }
    ],
    "time":"12:12:43Z",
    "timestamp":"1990-10-14T12:12:43Z",
    "map":{
        "flink":123
    },
    "mapinmap":{
        "inner_map":{
            "key":234
        }
    }
}

定义

CREATE TABLE json_source (
    id            BIGINT,
    name          STRING,
    `date`        DATE,
    obj           ROW<time1 TIME,str STRING,lg BIGINT>,
    arr           ARRAY<ROW<f1 STRING,f2 INT>>,
    `time`        TIME,
    `timestamp`   TIMESTAMP(3),
    `map`         MAP<STRING,BIGINT>,
    mapinmap      MAP<STRING,MAP<STRING,INT>>,
    proctime as PROCTIME()
 ) WITH (
    'connector.type' = 'kafka',  
    'connector.topic' = 'test',  
    'connector.properties.zookeeper.connect' = 'localhost:2181',
    'connector.properties.bootstrap.servers' = 'localhost:9092',   
    'connector.properties.group.id' = 'testGroup',    
    'connector.version'='universal',  
    'format.type' = 'json',     
    'connector.startup-mode'='latest-offset' 
);

获取

select id, name,`date`,obj.str,arr[1].f1,`map`['flink'],mapinmap['inner_map']['key'] from json_source;
//注意数组index从1开始

构造

insert into json_source select 111 as id,'name' as name,Row(CURRENT_TIME,'ss',123) as obj,Array[Row('f',1),Row('s',2)] as arr,Map['k1','v1','k2','v2'] as `map`,Map['inner_map',Map['k','v']] as mapinmap;
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,753评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,668评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,090评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,010评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,054评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,806评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,484评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,380评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,873评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,021评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,158评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,838评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,499评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,044评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,159评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,449评论 3 374
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,136评论 2 356

推荐阅读更多精彩内容