Pandas手册(10)- 数据转换

这里接着上一篇,继续记录下pandas中数据处理方面的函数

1. 重复数据

结果集中,可能会有重复数据,有函数可以做去重操作

#判断数据是否重复
DataFrame.duplicated(subset=None, keep='first')
Return boolean Series denoting duplicate rows, optionally only considering certain columns

#删除重复记录
DataFrame.drop_duplicates(subset=None, keep='first', inplace=False)
Return DataFrame with duplicate rows removed, optionally only considering certain columns
data = pd.DataFrame({'K1':['one']*3+['two']*4,'k2':[1,1,2,3,3,4,4]})

data
Out[100]: 
    K1  k2
0  one   1
1  one   1
2  one   2
3  two   3
4  two   3
5  two   4
6  two   4

#keep参数,默认是first,会以第一个为准,后面再出现就是True
data.duplicated()
Out[103]: 
0    False
1     True
2    False
3    False
4     True
5    False
6     True
dtype: bool

data.duplicated(keep='last')
Out[116]: 
0     True
1    False
2    False
3     True
4    False
5     True
6    False
dtype: bool

#这里drop也是一样的,可以用keep控制保留第一次出现的,还是最后1次出现的
data.drop_duplicates()
Out[104]: 
    K1  k2
0  one   1
2  one   2
3  two   3
5  two   4

这2个函数,默认都是判断全部的列,也可以指定列

data['v1']=range(7)

data
Out[118]: 
    K1  k2  v1
0  one   1   0
1  one   1   1
2  one   2   2
3  two   3   3
4  two   3   4
5  two   4   5
6  two   4   6

data.duplicated()
Out[119]: 
0    False
1    False
2    False
3    False
4    False
5    False
6    False
dtype: bool

data.duplicated(subset=['K1'])
Out[120]: 
0    False
1     True
2     True
3    False
4     True
5     True
6     True
dtype: bool

data.drop_duplicates(subset=['K1'])
Out[121]: 
    K1  k2  v1
0  one   1   0
3  two   3   3

2. 利用函数或映射进行数据转换

有的时候,我们想要对Series和dataframe中的每个元素做些转换,就用到了这个函数,和Python内置的map函数类似

Series.map(arg, na_action=None)
Map values of Series using input correspondence (which can be a dict, Series, or function)
arg : function, dict, or Series

DataFrame.applymap(func)
Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame
s1 = pd.Series(range(10))

s1
Out[133]: 
0    0
1    1
2    2
3    3
4    4
5    5
6    6
7    7
8    8
9    9
dtype: int32

s1.map(lambda x:x+10)
Out[134]: 
0    10
1    11
2    12
3    13
4    14
5    15
6    16
7    17
8    18
9    19
dtype: int64

s1.map(lambda x:x*-1)
Out[135]: 
0    0
1   -1
2   -2
3   -3
4   -4
5   -5
6   -6
7   -7
8   -8
9   -9
dtype: int64

这个map,不单单可以是函数,还可以是 Series或dict

x = pd.Series([1,2,3], index=['one', 'two', 'three'])

y = pd.Series(['foo', 'bar', 'baz'], index=[1,2,3])

x
Out[142]: 
one      1
two      2
three    3
dtype: int64

y
Out[143]: 
1    foo
2    bar
3    baz
dtype: object

x.map(y)
Out[144]: 
one      foo
two      bar
three    baz
dtype: object

z = {1: 'A', 2: 'B', 3: 'C'}

x.map(z)
Out[146]: 
one      A
two      B
three    C
dtype: object

3.替换值

在字符串中,我们经常会用到replace函数,用来替换指定的值,pandas中也有

DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)
Replace values given in ‘to_replace’ with ‘value’.
to_replace : str, regex, list, dict, Series, numeric, or None

Series.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)
Replace values given in ‘to_replace’ with ‘value’.
data = pd.Series([1., -999., 2., -999., -1000., 3.])

data
Out[150]: 
0       1.0
1    -999.0
2       2.0
3    -999.0
4   -1000.0
5       3.0
dtype: float64

#我们将-999这个异常值替换掉
data.replace(-999,np.nan)
Out[151]: 
0       1.0
1       NaN
2       2.0
3       NaN
4   -1000.0
5       3.0
dtype: float64

#同时替换多个值,也可以
data.replace([-999,-1000],np.nan)
Out[152]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    NaN
5    3.0
dtype: float64

data.replace([-999,-1000],[np.nan,0])
Out[153]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355

推荐阅读更多精彩内容