首先我们说下前期准备工作
1.肯定要有能运行Tensorflow环境win10环境搭建
2.object_detection框架的安装 框架地址
3.protobuf 编译器(我用3.4版本,3.4+的发现无法找到文件不知道为什么)
大概就这么多我们一步一步开始。
第一步就不多说了,没搭建好的先自己搭建好。
我们先去下载框架代码下来·········
下载完成后解压出来会有一个models-master的文件,文件应该比较大在2G左右。
里面包含很多最新的网络模型和很多demo有兴趣的童鞋可以看下github上面的介绍,说的很详细。不过都是基于Linux。
我们的目标检测就在research/object_detection
官方也有对该文件目录的简介和使用方法(Linux)。
接下来我们第三步下载的编译器就是用来编译object_detection里的porto文件的
在bin下有个exe文件,我们将这个bin目录直接添加到环境变量里面方便使用。
在cmd输入protoc
这就说明proto工具可以使用,然后我们开始编译object_detection下的protos文件下的所有proto文件。
我们在cmd切换到research目录下后输入protoc ./object_detection/protos/*.proto --python_out=.
编译完成后会生成很多.py文件
接下来在我们python环境下加入引用
我的目录为 D:\ProgramData\Anaconda3\envs\py36\Lib\site-packages
在这个目录下创建一个.pth的文件指明slim框架的位置,因为object_detection里面代码也调用了slim框架。
现在我们就可以跑下测试代码看看是否环境搭建完成,在我们的py36环境下运行python object_detection/builders/model_builder_test.py
出现OK就说明我们环境部署是没问题的,那我们在跑一个demo试试?
我们打开官方demo稍稍修改下就可以使用了,修改结果。
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import matplotlib
import cv2
# Matplotlib chooses Xwindows backend by default.
matplotlib.use('Agg')
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
from utils import label_map_util
from utils import visualization_utils as vis_util
##################### Download Model,如果本地已下载也可修改成本地路径
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
# Download model if not already downloaded
if not os.path.exists(PATH_TO_CKPT):
print('Downloading model... (This may take over 5 minutes)')
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
print('Extracting...')
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
else:
print('Model already downloaded.')
##################### Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
##################### Loading label map
print('Loading label map...')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# 测试图片的路径
TEST_IMAGE_PATH = 'test_images/test1.jpg'
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image = Image.open(TEST_IMAGE_PATH)
image_np = load_image_into_numpy_array(image)
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
print(TEST_IMAGE_PATH.split('.')[0]+'_labeled.jpg')
plt.figure(figsize=IMAGE_SIZE, dpi=300)
plt.imshow(image_np)
plt.savefig(TEST_IMAGE_PATH.split('.')[0] + '_labeled.jpg')
上面就修改了下图片路径,和改变了图片的保存方式。
我们从网上随便找些图片放在我们测试文件夹下运行该代码,就会出现所预测的结果。
不过从结果上我们环境运行是没问题的,那我们就可以自己准备数据学习自己针对的目标检测。