通过简单示例来理解什么是机器学习

1 什么是机器学习

什么是机器学习?

这个问题不同的人员会有不同的理解。我个人觉得,用大白话来描述机器学习,就是让计算机能够通过一定方式的学习和训练,选择合适的模型,在遇到新输入的数据时,可以找出有用的信息,并预测潜在的需求。最终反映的结果就是,好像计算机或者其他设备跟人类一样具有智能化的特征,能够快速识别和选择有用的信息。

机器学习通常可以分为三个大的步骤,即 输入、整合、输出,可以用下图来表示大致的意思:

sklearn01.jpg

2 机器学习示例(scikit-learn)

在python语言中,scikit-learn是一个开源的机器学习库。下面以sklearn为例,来简单描述机器学习的过程。

2.1 加载数据

通常第一步是获取相关数据,并进行相应的处理,使之可以在后续过程中使用。

from sklearn import datasets
  • 加载iris数据集并查看相关信息
# 加载数据集
iris = datasets.load_iris()

# print(iris)
print(type(iris))
print(iris.keys())

# 查看部分数据
print(iris.data[ :5, :])
# print(iris.data)
<class 'sklearn.datasets.base.Bunch'>
dict_keys(['DESCR', 'data', 'feature_names', 'target', 'target_names'])
[[ 5.1  3.5  1.4  0.2]
 [ 4.9  3.   1.4  0.2]
 [ 4.7  3.2  1.3  0.2]
 [ 4.6  3.1  1.5  0.2]
 [ 5.   3.6  1.4  0.2]]
# 查看数据维度大小
print(iris.data.shape)

# 数据属性
print(iris.feature_names)

# 特征名称
print(iris.target_names)

# 标签
print(iris.target)
(150, 4)
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
['setosa' 'versicolor' 'virginica']
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]

2.2 选择机器学习模型or算法

在获取数据,并将数据整理好后,需要选择合适的模型or算法来进行训练。
机器学习的模型有很多种,这里不作讨论,且每种模型的参数选择也是很大的一门学问。

from sklearn import svm

svm_classifier = svm.SVC(gamma=0.1, C=100)

# 预测结果得分很低
# svm_classifier = svm.SVC(gamma=10000, C=0.001)

# 定义测试集的数据量大小
N = 10

# 训练集
train_x = iris.data[:-N, :]
train_y = iris.target[ :-N]

# 测试集
test_x = iris.data[ :N, :]
y_true = iris.target[:N]

# 训练数据模型
svm_classifier.fit(train_x, train_y)

SVC(C=100, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma=0.1, kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
  • 将训练好的模式进行测试
y_pred = svm_classifier.predict(test_x)
  • 查看测试结果
from sklearn.metrics import accuracy_score

print(accuracy_score(y_true, y_pred))
1.0

2.3 将训练好的模型进行应用,即预测

  • 保存模型
import pickle

with open('svm_model_iris.pkl', 'wb') as f:
    pickle.dump(svm_classifier, f)
  • 加载模型进行应用
import numpy as np
# np.random.seed(9)

with open('svm_model_iris.pkl', 'rb') as f:
    model = pickle.load(f)

random_samples_index = np.random.randint(0,150,6)
random_samples = iris.data[random_samples_index, :]
random_targets = iris.target[random_samples_index]

random_predict = model.predict(random_samples)

print('真实值:', random_targets)
print('预测值:', random_predict)
真实值: [1 1 1 0 2 2]
预测值: [1 1 1 0 2 2]

闲谈

预测的结果好不好,直接体现出机器学习模型选择的优劣。对于机器学习这门高深的学问,我还有许多需要进一步学习的地方,欢迎一起交流,共同进步。

最后分享网上的一张图,来看看如何理解Machine Learning。

machine learning.jpg

如果您喜欢我的文章,欢迎关注微信公众号:Python数据之道(ID:PyDataRoad)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容