Doc2Vec论文及实战

第一部分:论文

最近读了一遍Doc2Vec原文,整篇文章思路清晰明了,建议在读博客之前先看一遍文章,因为文章中将各个部分讲的很详细。

这里只记录文章中最最重要的一段话:

At prediction time, one needs to perform an inference step to compute the paragraph vector for a new paragraph. This

is also obtained by gradient descent. In this step, the parameters for the rest of the model, the word vectors W and the softmax weights, are fixed.

即带优化的推断,所有同一个训练好的模型每次得到的文档向量可能是不同的~


第二部分: 实战

doc2vec的输入是TaggedDocument向量,它包括word_list和tags两部分,word_list是文档的分词列表,如['火箭','是','总冠军',]。tags是文档的标签列表。

   创建TaggedDocument对象:

document = TaggedDocdument(word_list,tags=label)

模型参数说明:

1.dm=1 PV-DM  dm=0 PV-DBOW。

2.size 所得向量的维度。

3.window 上下文词语离当前词语的最大距离。

4.alpha 初始学习率,在训练中会下降到min_alpha。

5.min_count 词频小于min_count的词会被忽略。

6.max_vocab_size 最大词汇表size,每一百万词会需要1GB的内存,默认没有限制。

7.sample 下采样比例。

8.iter 在整个语料上的迭代次数(epochs),推荐10到20。

9.hs=1 hierarchical softmax ,hs=0(default) negative sampling。

10.dm_mean=0(default) 上下文向量取综合,dm_mean=1 上下文向量取均值。

11.dbow_words:1训练词向量,0只训练doc向量。

定义模型:

model = Doc2Vec(dm=1, min_count=1, window=3, size=size, sample=1e-3, negative=5) 

   训练模型:

model.train(x_train, total_examples=model_dm.corpus_count, epochs=epoch_num) 

保存模型:

model.save('model/model_my.model')

使用infer_vector来推理文档的向量 (输入text仍然是文档的分词列表):

vector = model.infer_vector(text) 

使用model.docvecs[tag]得到已训练文档的向量。

得到与输入文档相似度最高的十个文档:

sims = model.docvecs.most_similar([vector], topn=10)


参考:

https://arxiv.org/pdf/1405.4053.pdf

https://blog.csdn.net/weixin_39837402/article/details/80254868

https://radimrehurek.com/gensim/models/doc2vec.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容

  • 前言 本文根据实际项目撰写,由于项目保密要求,源代码将进行一定程度的删减。本文撰写的目的是进行公司培训,请勿以任何...
    b19707134332阅读 4,843评论 0 18
  • 2018.3.3 10:05分,我的小千金出生,从为人夫到为人父,肩膀上又扛起了一份责任,不得不感谢我的媳妇,...
    d033b74b6b47阅读 367评论 1 1
  • 无常是常态。 无常是一种常态。世界上唯一不变的就是变化。 今天去同学那边玩,碰到了一场交通事故,一辆小轿车撞上了饿...
    释莲花阅读 440评论 0 1
  • 2017年11月24日第五天 ——今天早上是爸爸做的饭下的面条,儿子起来一听吃面条就不高兴了,搂着我说“妈妈我不想...
    王海瑞妈妈阅读 123评论 0 0
  • 为了去看这部电影,开场前我特意买了包纸巾。 向来泪点比笑点低的我这次失算了,或者说,并没有如想象中那般抱头痛哭。电...
    卷毛维安阅读 3,643评论 13 121