守恒定律by武斌

守恒定律

知识点

  • 动量守恒、角动量守恒的直观感受
  • 动量守恒的方程
  • 角动量守恒的方程
    • 约定好正方向
    • 初态时,写出各个物件的角动量L_{i}(注意正负号)
    • 末态时,写出各个物件的角动量L_{j}(注意正负号)
    • 然后,列方程为:\sum_{i}L_{i}=\sum_{j}L_{j}
tip

  • 相比对单词的辨析进行死记硬背,不如记几个例句。
  • 相比对物理概念进行全方位多角度的分析,不如记几个模型。
表达题

  • 动量守恒和角动量守恒的充要条件分别是

解答:
动量守恒的充要条件:当系统不受外力或所受外力的矢量和为零
角动量守恒的充要条件:当系统所受的外力矩为零

  • 借助具体例子培养直观认识。动量守恒的充要条件是合外力为零。作为近似,实际生活中,内力比外力强很多时,也认为动量守恒。下面常见的物理模型中,

    (1) 爆炸瞬间;
    (2) 两个小球非弹性碰撞(部分动能转化为内能)瞬间;
    (3) 子弹打击用轻绳悬挂的小球瞬间;
    (4) 光滑地面上有车,车上有人,人在车内走动。
    (5) 小球撞击墙壁反弹。
    (6) 子弹打击用轻杆悬挂的小球瞬间;
    请思考,其中动量守恒的有( ),记住这些模型,会减少很多困扰。

解答:(1),(4),

  • 借助具体例子培养直观认识。角动量守恒的充要条件是合外力矩为零。下面常见的物理模型中,
    (1) 地球绕着太阳转;
    (2) 光滑桌面上用轻绳拽着做圆周运动;
    (3) 光滑冰面上的芭蕾舞旋转;
    (4) 子弹打击用轻杆悬挂着的小球瞬间。
    (5) 小球打击旋转的滑轮的瞬间。
    (6) 绕同一转轴转动的两个飞轮,彼此啮合的瞬间;
    请思考,其中角动量守恒的有( ),记住这些模型,会减少很多困扰。

解答: (2),(3),(4),(5),(6)

  • 请记下角动量的核心公式,在角动量守恒中会反复使用。圆周运动的质点和定轴转动的刚体,角动量分别为

解答:圆周运动的质点:L=mvrsin\theta
定轴转动的刚体:L=J\omega

  • 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为I_{0},角速度为\omega_{0}。然后她将两臂收回,使转动惯量减少为\frac{1}{2}I_{0}.设这时她转动的角速度变为\omega,则角动量守恒的方程为

解答:I_{0}\omega_{0}=\frac{1}{2}I_{0}\omega

  • 一圆盘(M,R)绕垂直于盘面的水平光滑固定轴O转动,转速为\omega_{0}. 如图射来一个质量为m,速度大小为v_{0}的子弹,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度\omega。约定逆时针转时角动量为正。
    则初态时,将子弹速度沿切向(等效成圆周运动,从而得到角动量)和法向分解,其切向速度和角动量分别为
    (1) v_{0}, mRv_{0}
    (2) v_{0}\sin\theta, mRv_{0}\sin\theta
    (3) v_{0}\sin\theta, -mRv_{0}\sin\theta
    初态的总角动量为
    (4) \frac{1}{2}MR^{2}\omega_{0}-mRv_{0}\sin\theta
    (5) \frac{1}{2}MR^{2}\omega_{0}+mRv_{0}\sin\theta
    末态的总角动量为
    (6) \frac{1}{2}MR^{2}\omega
    (7) \frac{1}{2}MR^{2}\omega+mR^{2}\omega
    核心方程是为
    (8) \frac{1}{2}MR^{2}\omega_{0}-mRv_{0}\sin\theta=\frac{1}{2}MR^{2}\omega+mR^{2}\omega
    (9) \frac{1}{2}MR^{2}\omega_{0}+mR^{2}\omega_{0}=\frac{1}{2}MR^{2}\omega+mR^{2}\omega
    以上正确的是( )

解答:(3),(4),(8)

  • 一圆盘(M,R)绕垂直于盘面的水平光滑固定轴O转动,转速为\omega_{0}. 如图射来两个质量同为m,速度大小同为v_{0},方向相反,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度\omega。约定逆时针转时角动量为正。
    则初态时,总角动量为
    (1) \frac{1}{2}MR^{2}\omega_{0}-2mRv_{0}
    (2) \frac{1}{2}MR^{2}\omega_{0}
    末态的总角动量为
    (3) \frac{1}{2}MR^{2}\omega
    (4) \frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    核心方程是为
    (5) \frac{1}{2}MR^{2}\omega_{0}-2mRv_{0}=\frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    (6) \frac{1}{2}MR^{2}\omega_{0}=\frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    以上正确的是

解答:(2),(4),(6)

  • 角动量守恒的计算题:有一质量为M、长为l的均匀细棒,平放在光滑的水平桌面上,以角速度\omega_{0}绕通过端点O顺时针转动。另有质量为m,初速为v_{0}的小滑块,与棒的底端A点相撞。碰撞后的瞬间,细棒反转,且角速度为\omega_{1};小滑块反向,速率为v_{1},如图所示。规定顺时针转动方向为正。
    则初态时,总角动量为
    (1) \frac{1}{3}Ml^{2}\cdot\omega_{0}+ml\cdot v_{0}
    (2) \frac{1}{3}Ml^{2}\cdot\omega_{0}-ml\cdot v_{0}
    末态的总角动量为
    (3) \frac{1}{3}Ml^{2}\cdot\omega_{1}-ml\cdot v_{1}
    (4) -\frac{1}{3}Ml^{2}\cdot\omega_{1}+ml\cdot v_{1}
    核心方程是为
    (5) \frac{1}{3}Ml^{2}\cdot\omega_{0}+ml\cdot v_{0}=\frac{1}{3}Ml^{2}\cdot\omega_{1}-ml\cdot v_{1}
    (6) \frac{1}{3}Ml^{2}\cdot\omega_{0}-ml\cdot v_{0}=-\frac{1}{3}Ml^{2}\cdot\omega_{1}+ml\cdot v_{1}
    以上正确的是

解答:(2),(4),(6)

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 八月底的深圳,也开始有了些秋意浓 阵阵秋风迎面吹来 片片落叶随风扬起 秋意浓 带着秋风的凉意 低吟着落叶的旋律 秋...
    瑜欣阅读 335评论 6 1
  • 厌了。。。。。。。。。 只要闭眼! 睡睡睡睡睡睡睡睡睡
    已丑草阅读 137评论 0 0
  • 复盘Day103 Horizon 记录:在库伯学习圈中,首先是具体经验,然后观察反思、归纳和概念化,最后测试和行动...
    Horizon_小小阅读 552评论 0 0
  • 如果一定要世界上选择最有把创意实现到产品能力的公司,一个是乔布斯的苹果,一个是暴雪,再一个就是皮克斯了。自然,这部...
    郑磊的战斗青春阅读 312评论 0 0