跳表原理

数据结构和算法之——跳表

之前我们知道,二分查找依赖数组的随机访问,所以只能用数组来实现。如果数据存储在链表中,就真的没法用二分查找了吗?而实际上,我们只需要对链表稍加改造,就可以实现类似“二分”的查找算法,这种改造之后的数据结构叫作跳表(Skip List)

1. 何为跳表?

对于一个单链表,即使链表是有序的,如果我们想要在其中查找某个数据,也只能从头到尾遍历链表,这样效率自然就会很低。

image

假如我们对链表每两个结点提取一个结点到上一级,然后建立一个索引指向原始结点,如下图所示。


image

这时候,我们要查找某一个数据的时候,就可以先在索引里面查找出一个大的范围,然后再下降到原始链表中精确查找。

比如,我们要查找 16,我们发现 16 位于 13 和 17 之间,这时候,我们就从 13 的地方下降到原始链表,然后再往后查询。原来我们查找 16,需要遍历 10 个结点,现在只需要遍历 7 个结点。

我们发现,加一层索引后,查找一个结点需要遍历的次数减少了,也就是查找效率提高了

那么我们再多加一级索引呢?效果会不会有更大提升?


image

这一次,我们只需要遍历 6 个结点了。

数据量不大的时候这种方法可能效率提高得还不是很明显,下面看一个包含 64 个结点的例子,这次我们建立了五级索引。

image

查找 62 的时候原来需要遍历 62 次,现在只需要 11 次即可。针对链表长度比较大的时候,构建索引查找效率的提升就会非常明显

2. 跳表查询的分析?

如果链表中总共有 nn 个结点,那么第一级索引就有 n2n2 个结点,第二级索引就有 n4n4 个结点,以此类推,那么第 kk 级索引就有 n2kn2k 个结点。如果最高级索引有 2 个结点,那总的索引级数 k=log2n−1k=log2n−1,如果我们算上原始链表的话,那也就是总共有 log2nlog2n 级。

在第 kk 级索引中,假设我们要查找的数据为 xx,当我们查找到 yy 结点时,发现 yy<x<z 时此时我们就要下降到 k−1k−1 级索引继续查找。在第 k−1k−1 级索引中,yy 和 zz 之间只有三个结点,因此,我们最多只需要查找 3 个结点。以此类推,每一级的索引最多都只需要遍历 3 个结点

image

而总的级别数为 log2nlog2n,因此查找的时间复杂度就为 3∗log2n=logn3∗log2n=logn。跳表查找的时间复杂度和二分查找一样,但这其实是以空间来换时间的设计思路。 跳表的所有额外索引结点总数为 n2+n4+n8+...+4+2=n−2n2+n4+n8+...+4+2=n−2,所以跳表的空间复杂度为 O(n)O(n)。 但如果我们每三个结点建立一个索引,这时候额外需要的结点总数为 n2n2,虽然空间复杂度依然为 O(n)O(n),但减少了一半的索引节点存储空间。

image

实际上,在实际开发中,原始链表中存储的可能是很大的对象,而索引结点只需要存储关键值和几个指针,其额外占用的空间可以被忽略掉

3. 跳表高效的动态插入和删除?

在链表中,如果我们知道要插入数据的位置,那么插入的时间复杂度就为 O(1)O(1)。在跳表中,查找的时间复杂度为 O(logn)O(logn),因此,动态插入数据的时间复杂度也就是 O(logn)O(logn) 了。


image

从链表中删除结点的时候,如果结点在索引中也有出现,那么我们除了要删除原始链表中的结点,还要删除索引中的。

当我们不停地往跳表中插入数据的时候,如果我们不更新索引,就有可能出现某两个结点之间数据非常多的情况。极端情况下,跳表还会退化为单链表。

image

因此,我们需要某种手段来维护索引与原始链表大小之间的平衡,也就是说,如果链表结点变多了,索引值就相应地增加一些

当我们往跳表中插入数据的时候,我们可以选择同时也将这个数据插入到部分索引层中。而插入到哪些索引层中,则由一个随机函数生成一个随机数字来决定。如果这个数字为 K,那我们就将数据插入到第一级到第 K 级索引中。


image

4. 为什么 Redis 要用跳表来实现有序集合而不是红黑树?

Redis 中的有序集合支持的核心操作主要有以下几个:

  • 插入一个数据
  • 删除一个数据
  • 查找一个数据
  • 按照区间查找数据
  • 迭代输出有序序列

其中,插入、删除、查找以及迭代输出有序序列这几个操作,红黑树也可以完成,时间复杂度和跳表是一样的。

但是,按照区间查找数据这个操作,红黑树的效率没有跳表高。跳表可以在 O(logn)O(logn) 时间复杂度定位区间的起点,然后在原始链表中顺序向后查询就可以了,这样非常高效。
此外,相比于红黑树,跳表还具有代码更容易实现、可读性好、不容易出错、更加灵活等优点,因此 Redis 用跳表来实现有序集合。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343