34. 在排序数组中查找元素的第一个和最后一个位置
难度中等985收藏分享切换为英文接收动态反馈
给定一个按照升序排列的整数数组 nums
,和一个目标值 target
。找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target
,返回 [-1, -1]
。
进阶:
- 你可以设计并实现时间复杂度为
O(log n)
的算法解决此问题吗?
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
提示:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
-
nums
是一个非递减数组 -109 <= target <= 109
- Find First and Last Position of Element in Sorted Array
Medium
5577208Add to ListShare
Given an array of integers nums
sorted in ascending order, find the starting and ending position of a given target
value.
If target
is not found in the array, return [-1, -1]
.
Follow up: Could you write an algorithm with O(log n)
runtime complexity?
Example 1:
Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]
Example 2:
Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]
Example 3:
Input: nums = [], target = 0
Output: [-1,-1]
Constraints:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
-
nums
is a non-decreasing array. -109 <= target <= 109
该部分摘自 极客时间-数据结构与算法之美
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else if (a[mid] < value) {
low = mid + 1;
} else {
if ((mid == 0) || (a[mid - 1] != value)) return mid;
else high = mid - 1;
}
}
return -1;
}
我来稍微解释一下这段代码。a[mid]跟要查找的value的大小关系有三种情况:大于、小于、等于。对于a[mid]>value的情况,我们需要更新high= mid-1;对于a[mid]<value的情况,我们需要更新low=mid+1。这两点都很好理解。那当a[mid]=value的时候应该如何处理呢?
如果我们查找的是任意一个值等于给定值的元素,当a[mid]等于要查找的值时,a[mid]就是我们要找的元素。但是,如果我们求解的是第一个值等于给定值的元素,当a[mid]等于要查找的值时,我们就需要确认一下这个a[mid]是不是第一个值等于给定值的元素。
我们重点看第11行代码。如果mid等于0,那这个元素已经是数组的第一个元素,那它肯定是我们要找的;如果mid不等于0,但a[mid]的前一个元素a[mid-1]不等于value,那也说明a[mid]就是我们要找的第一个值等于给定值的元素。
如果经过检查之后发现a[mid]前面的一个元素a[mid-1]也等于value,那说明此时的a[mid]肯定不是我们要查找的第一个值等于给定值的元素。那我们就更新high=mid-1,因为要找的元素肯定出现在[low, mid-1]之间。
对比上面的两段代码,是不是下面那种更好理解?实际上,很多人都觉得变形的二分查找很难写,主要原因是太追求第一种那样完美、简洁的写法。而对于我们做工程开发的人来说,代码易读懂、没Bug,其实更重要,所以我觉得第二种写法更好。
变体二:查找最后一个值等于给定值的元素
前面的问题是查找第一个值等于给定值的元素,我现在把问题稍微改一下,查找最后一个值等于给定值的元素,又该如何做呢?
如果你掌握了前面的写法,那这个问题你应该很轻松就能解决。你可以先试着实现一下,然后跟我写的对比一下。
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else if (a[mid] < value) {
low = mid + 1;
} else {
if ((mid == n - 1) || (a[mid + 1] != value)) return mid;
else low = mid + 1;
}
}
return -1;
}
我们还是重点看第11行代码。如果a[mid]这个元素已经是数组中的最后一个元素了,那它肯定是我们要找的;如果a[mid]的后一个元素a[mid+1]不等于value,那也说明a[mid]就是我们要找的最后一个值等于给定值的元素。
如果我们经过检查之后,发现a[mid]后面的一个元素a[mid+1]也等于value,那说明当前的这个a[mid]并不是最后一个值等于给定值的元素。我们就更新low=mid+1,因为要找的元素肯定出现在[mid+1, high]之间。
变体三:查找第一个大于等于给定值的元素
现在我们再来看另外一类变形问题。在有序数组中,查找第一个大于等于给定值的元素。比如,数组中存储的这样一个序列:3,4,6,7,10。如果查找第一个大于等于5的元素,那就是6。
实际上,实现的思路跟前面的那两种变形问题的实现思路类似,代码写起来甚至更简洁。
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] >= value) {
if ((mid == 0) || (a[mid - 1] < value)) return mid;
else high = mid - 1;
} else {
low = mid + 1;
}
}
return -1;
}
如果a[mid]小于要查找的值value,那要查找的值肯定在[mid+1, high]之间,所以,我们更新low=mid+1。
对于a[mid]大于等于给定值value的情况,我们要先看下这个a[mid]是不是我们要找的第一个值大于等于给定值的元素。如果a[mid]前面已经没有元素,或者前面一个元素小于要查找的值value,那a[mid]就是我们要找的元素。这段逻辑对应的代码是第7行。
如果a[mid-1]也大于等于要查找的值value,那说明要查找的元素在[low, mid-1]之间,所以,我们将high更新为mid-1。
变体四:查找最后一个小于等于给定值的元素
现在,我们来看最后一种二分查找的变形问题,查找最后一个小于等于给定值的元素。比如,数组中存储了这样一组数据:3,5,6,8,9,10。最后一个小于等于7的元素就是6。是不是有点类似上面那一种?实际上,实现思路也是一样的。
有了前面的基础,你完全可以自己写出来了,所以我就不详细分析了。我把代码贴出来,你可以写完之后对比一下。
public int bsearch7(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else {
if ((mid == n - 1) || (a[mid + 1] > value)) return mid;
else low = mid + 1;
}
}
return -1;
}
LeetCode-34-code
class Solution {
public static int[] searchRange(int[] nums, int target) {
int[] ans = { -1, -1 };
if (nums == null || nums.length == 0) {
return ans;
}
ans[0] = findFirst(nums, target);
ans[1] = findLast(nums, target);
return ans;
}
public static int findFirst(int[] arr, int num) {
int L = 0;
int R = arr.length - 1;
int ans = -1;
int mid = 0;
while (L <= R) {
mid = L + ((R - L) >> 1);
if (arr[mid] < num) {
L = mid + 1;
} else if (arr[mid] > num) {
R = mid - 1;
} else {
ans = mid;
R = mid - 1;
}
}
return ans;
}
public static int findLast(int[] arr, int num) {
int L = 0;
int R = arr.length - 1;
int ans = -1;
int mid = 0;
while (L <= R) {
mid = L + ((R - L) >> 1);
if (arr[mid] < num) {
L = mid + 1;
} else if (arr[mid] > num) {
R = mid - 1;
} else {
ans = mid;
L = mid + 1;
}
}
return ans;
}
}