SPSS中的均值比较—假设检验

前一段时间给大家整体的分享了关于如何使用SPSS来进行描述性统计分析,当时一共是分了三节内容,不知道大家有没有在空闲的时间好好的练习掌握一下。

在给大家分享完关于描述性统计分析的章节以后,我们接下来会用一段时间来给大家分享一下关于如何用SPSS来进行均值比较。关于均值比较在SPSS中是一个比较常见的分析方法,在这里面最常见的方法就是T检验,分别有单样本T检验、独立样本T检验和配对样本T检验。在学习这些检验方法之前,我们首选需要了解假设检验这个概念,因为不仅仅是在均值比较中,在后面的其他分析中我们也是随时会用到假设检验的思想。

假设检验的理论及原理

假设某个企业生产一种电子元件,在进行抽检的时候,企业的质检员说该企业的产品故障率只有千分之一。但是我们在检验的时候发现,从1000个电子元件中随机拿出来了5个,调试以后发现其中有2个发生了故障。这说明什么呢?

其实,如果企业的质检员说的确实是正确的,那照理来说1000个电子原件中应该只有1个会发生故障,这个我们称之为原假设。在这个情况下,我们是不可能出现检验到2个甚至2个以上的电子原件会发生故障,也就是说这种情况发生的概率应该是0。在统计学中,概率极小的事件我们称之为小概率事件。所以说,我们从1000个电子元件中随机拿出来5个进行检验,然后其中有2个发生了故障,也就是说小概率事件发生了。所以这个时候我们的结论是质检员说的话是不正确的,检验的结果没有支持他的判断。

但是如果我们换一种情况,在我们检验这1000个电子元件之前,质检员跟我们说这批电子元件的故障率是1%,我们依然从随机选择的5个电子元件中发现有2个是出现故障了,那这个时候又说明了什么呢?其实这个时候就应该有两个结论:

①:这批商品的故障率远高于1%,质量不可靠;

②:这批商品的故障率确实是1%,只是我们碰巧拿到了有故障的元件而已。

这个时候我们就应该来进行计算,按1%的故障率来说,1000个元件就应该有10个元件是会出现故障的,我们在5个里面发现2个产生了故障,这个情况的概率应该是0.088%(大家可以自己计算一下)。这样一对比,我们就会发现其实这是一个小概率事件而已。

在我们的原假设成立的条件下,如果我们分析计算出来的对应事件概率比较大,那就不能拒绝原假设。如果结果相反,那就说明小概率事件发生了。正常来说,小概率事件在一次实验中是几乎不可能会发生的,但是正常不可能发生的事件确实发生了。那么我们只能说我们的结果不能够支持我们的假设,也就是说质检员1%故障率的说法也是错误的。

上面的例子其实就是我们假设检验的原理:反证法以及小概率原理。反证法的意思就是说,我们在检验之前,先假定原假设是正确的,然后我们根据这个来得到我们的分析结论,如果我们得到的分析结论与原假设中的结论是矛盾的(根据小概率原理),我们就可以说原假设其实是不能成立的,或者一般在分析中我们叫拒绝原假设。虽然我们在做假设检验的时候依据是“小概率事件在一次实验中是几乎不可能会发生的”这个原理,但是小概率时间并不代表没有概率,也就是说它依旧是可能发生的,只是发生的概率很小而已。所以我们在做假设检验的时候会遇到两类问题:

1.原假设是正确的,但是我们根据结果错误的拒绝了原假设,在这个时候这个事件出现的概率也就是我们出现问题的概率。在前面的例子中,如果第二次检验电子元件的合格率确实是1%,但是我们认为这批元件的合格率大于1%,那我们就出现了第一种问题,同时出现这个问题的概率是0.088%。

2.原假设是错误的,但是我们根据结果并没有拒绝原假设,那这个事件发生的概率也就是这类问题出现的概率。

当我们在进行假设检验时,我们无法避免出现这两个问题,或者说降低出现这两类问题的概率。因为如果我们降低了其中一类问题的概率,那另外一类问题的概率就会随之增加。在一开始的举例中,企业是希望我们不要把无故障的元件误判为有故障,也就是说要降低企业的风险。其实在我们实际分析中,我们在第一类问题上面会受到更多的重视,我们会想把这个情况控制在一定的水平。而这个水平我们就将它称为显著性水平,在分析中用α表示。一般我们以0.05或者0.01等数字来表示它(根据实际情况来进行选择)。

正常的数据分析中,假设检验一般是先针对总体样本的均值、比例或者分布来做出假设,也就是我们说的原假设。然后我们会计算在该假设成立的前提下出现这种情况的概率,我们将它叫做P值。如果在实验的过程中小概率时间发生了,也就是说P<α,那就说明结果不支持原假设,我们应该拒绝原假设。在使用SPSS的时候,将这种概率称为显著性的值。反之如果P>α,那我们就接受原假设。在这个里面的α是我们用来把控第一类问题出现的概率,也就是出现这一类问题的概率最大为α。

最后我们来整理一下假设检验的分析步骤:

1.确定分析对应的原假设和与之对应的备用假设。

2.选择我们用来进行假设检验的对应统计量。

3.对选择出来的统计量进行计算并检验,得到P值。

4.确定显著性水平α。如果p<α,拒绝原假设。反之,接受原假设。

在我们的实际分析中,许多时候我们进行假设检验都是用来比较两个总体的均值。并且均值的比较在许多研究中都特别常见,应用也特别广泛。今天我们先整理了解假设检验的理论和原理,可能看起来会有一点绕,大家一定要多思考,这样的话我们对接下来的均值分析以及T检验的分析大家在理解的时候就不会有太大的问题了。

欢迎大家进行补充,大家可以在我们的QQ交流群(514581193)或者微信群中(关注小白数据营公众号后台留言进入)参与讨论和交流。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354

推荐阅读更多精彩内容