OPENCV3.3---introduction

Opencv 2.* 和 1. * 的区别:2.* 主要是c++的接口,1.* 主要是c接口。

API概念

1. cv命名空间
using namespace cv;
2. 自动内存管理

Mat等大的数据类型都是通过引用计数管理内存。你可以利用Mat::clone真的进行复制。

// 创建一个8M的矩阵
Mat A(1000, 1000, CV_64F);
// 创建同一个矩阵的一个引用,是即时生效的
Mat B = A;
// 创建对A的第三行引用,同样不进行复制
Mat C = B.row(3);
// 真的复制
Mat D = B.clone();
// 复制A的第五行到第3行
B.row(5).copyTo(C);
// now let A and D share the data; after that the modified version
// of A is still referenced by B and C.
A = D;
// now make B an empty matrix (which references no memory buffers),
// but the modified version of A will still be referenced by C,
// despite that C is just a single row of the original A 即A仍然不会释放
B.release();
// finally, make a full copy of C. As a result, the big modified
// matrix will be deallocated, since it is not referenced by anyone 即 A 被释放掉
C = C.clone();

对于其他没有把自动销毁考虑在内的数据类型,可以利用Ptr模板。

//不是这样:T* ptr = new T(...);
Ptr<T> ptr(new T(...));
Ptr<T> ptr = makePtr<T>(...);

这样就可以进行引用计数了。

3. 输出的自动分配
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
using namespace cv;
int main(int, char**)
{
    VideoCapture cap(0);
    if(!cap.isOpened()) return -1;
    Mat frame, edges;
    namedWindow("edges",1);
    for(;;)
    {
        cap >> frame;
        cvtColor(frame, edges, COLOR_BGR2GRAY);
        GaussianBlur(edges, edges, Size(7,7), 1.5, 1.5);
        Canny(edges, edges, 0, 30, 3);
        imshow("edges", edges);
        if(waitKey(30) >= 0) break;
    }
    return 0;
}

frame,edges是自动分配的输出矩阵。除非类型、大小变化,否则只分配一次。
有个别方法不符合自动分配机制,比如 cv::mixChannels, cv::RNG::fill 。你需要自己事先分配。

4. 饱和运算

常用的像素类型是uchar就支持饱和运算:I(x,y)=min(max(round(r),0),255)。opencv代码是I.at<uchar>(y, x) = saturate_cast<uchar>(r)。对于8s,16s和u类型同样适用。不适用32位整数。

5. 固定的像素类型,有限的模板

只有少数的简单模板。像generic Ptr<> implementation , saturate_cast<>()还有一些像素接触操作。
基础数据类型:

8-bit unsigned integer (uchar)
8-bit signed integer (schar)
16-bit unsigned integer (ushort)
16-bit signed integer (short)
32-bit signed integer (int)
32-bit floating-point number (float)
64-bit floating-point number (double)

枚举:enum { CV_8U=0, CV_8S=1, CV_16U=2, CV_16S=3, CV_32S=4, CV_32F=5, CV_64F=6 };

Mat mtx(3, 3, CV_32F); // make a 3x3 floating-point matrix
Mat cmtx(10, 1, CV_64FC2); // make a 10x1 2-channel floating-point
                           // matrix (10-element complex vector)
Mat img(Size(1920, 1080), CV_8UC3); // make a 3-channel (color) image
                                    // of 1920 columns and 1080 rows.
Mat grayscale(image.size(), CV_MAKETYPE(image.depth(), 1)); // make a 1-channel image of
                                                            // the same size and same
                                                            // channel type as img

越复杂的算法支持的数据类型越少,如人脸识别只支持8位的灰度或彩色图像。

6. InputArray and OutputArray

Many OpenCV functions process dense 2-dimensional or multi-dimensional numerical arrays. Usually, such functions take cppMat as parameters, but in some cases it's more convenient to use std::vector<> (for a point set, for example) or Matx<> (for 3x3 homography matrix and such).To avoid many duplicates in the API, special "proxy" classes have been introduced. The base "proxy" class is InputArray.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容