- 概念
二分查找又叫折半查找,从排序数组中查找元素的位置。 -
图示
- Java实现
public class BinarySearch {
public static void main(String[] args) {
int[] array = new int[7];
for (int i = 0; i < array.length; i++) {
array[i] = i + 1;
}
if (binarySearch(array, 0)) System.out.println("找到");
else System.out.println("没找到");
}
private static boolean binarySearch(int[] array, int target) {
return array.length != 0 && recursion(array, 0, array.length - 1, target);
// return array.length != 0 && nonRecursion(array, target);
}
private static boolean recursion(int[] array, int low, int high, int target) {
int mid = (low + high) >> 1;
System.out.println("low:" + low + ",mid:" + mid + ",high:" + high);
if (low <= high) {
if (array[mid] > target) return recursion(array, low, mid - 1, target);
else if (array[mid] < target) return recursion(array, mid + 1, high, target);
else return array[mid] == target;
} else
return false;
}
//非递归
private static boolean nonRecursion(int[] array, int target) {
int low = 0;
int high = array.length - 1;
int mid;
while (low <= high) {
mid = (low + high) >> 1;
if (array[mid] > target) high = mid - 1;
else if (array[mid] < target) low = mid + 1;
else return array[mid] == target;
}
return false;
}
}
- 复杂度
T(n)=T(n/2)+θ(1){比较}=θ(1)+....+θ(1){total log2(n)}=θ(log2(n))