ES实现百亿级数据实时分析-实战案例

背景

我们小组主要负责Alpha机器学习平台(以下简称Alpha)的设计与实现工作,前段时间算法同学提出一个需求,希望能够按照小时为单位,看到每个实验中各种特征(单个或组合)的覆盖率、正样本占比、负样本占比。我简单解释一下这三种指标的定义:

  • 覆盖率:所有样本中出现某一特征的样本的比例
  • 正样本占比:所有出现该特征的样本中,正样本的比例
  • 负样本占比:所有出现该特征的样本中,负样本的比例

光看这三个指标,大家可能会觉得这个需求很简单,无非就是一个简单的筛选、聚合而已。

如果真的这么简单,我也没必要写这篇文章单独记录了。问题的关键就在于,每小时有将近1亿的数据量,而我们需要保存7天的数据,数据总量预计超过了100亿。

技术方案

在了解清楚需求后,我们小组马上对技术方案展开讨论,讨论过程中出现了3种方案:

  • 第一种:用Spark流式计算,计算每一种可能单个或组合特征的相关指标
  • 第二种:收到客户端请求后,遍历HDFS中相关数据,进行离线计算
  • 第三种:将数据按照实验+小时分索引存入ES,收到客户端请求后,实时计算返回

首先,第一种方案直接被diss,原因是一个实验一般会出现几百、上千个特征,而这些特征的组合何止几亿种,全部计算的话,可行性暂且不论,光是对资源的消耗就无法承受

第二种方案,虽然技术上是可行的,但离线计算所需时间较长,对用户来说,体验并不理想。并且,为了计算目标1%的数据而要遍历所有数据,对资源也存在很大浪费

第三种方案,将数据按照实验+小时分索引后,可以将每个索引包含的数据量降到1000万以下,再借助ES在查询、聚合方面高效的能力,应该可以实现秒级响应,并且用户体验也会非常好

技术方案由此确定。

技术架构

技术架构

1.用Spark从Kafka中接入原始数据,之后对数据进行解析,转换成我们的目标格式

2.将数据按照实验+小时分索引存入ES中

3.接受到用户请求后,将请求按照实验+特征+小时组合,创建多个异步任务,由这些异步任务并行从ES中过滤并聚合相关数据,得到结果

4.将异步任务的结果进行合并,返回给前端进行展示

代码实现

异步任务

// 启动并行任务

final Map<String,List<Future<GetCoverageTask.Result>>> futures = Maps.newHashMap();

for(String metric : metrics) { // 遍历要计算的指标

final SampleRatio sampleRatio = getSampleRatio(metric);

for (String exptId : expts) { // 遍历目标实验列表

for (String id : features) { // 遍历要分析的特征

final String name = getMetricsName(exptId, sampleRatio, id);

final List<Future<GetCoverageTask.Result>> resultList = Lists.newArrayList();

for (Date hour : coveredHours) { // 将时间按照小时进行拆分

final String fieldName = getFieldName(isFect ? Constants.FACET_COLLECT : Constants.FEATURE_COLLECT, id);

final GetCoverageTask task = new GetCoverageTask(exptId, fieldName, sampleRatio, hour);

// 启动并行任务

final Future<GetCoverageTask.Result> future = TaskExecutor.submit(task);

 resultList.add(future);

 }

futures.put(name, resultList);

 }

}

}

final QueryRes queryRes = new QueryRes();

final Iterator<Map.Entry<String, List<Future<GetCoverageTask.Result>>>> it = futures.entrySet().iterator();

while (it.hasNext()){

// 省略结果处理流程

 }

指标计算

// 1\. 对文档进行聚合运行,分别得到基础文档的数量,以及目标文档数量

final AggregationBuilder[] agg = getAggregationBuilder(sampleRatio, fieldName);

final SearchSourceBuilder searchBuilder = new SearchSourceBuilder();

searchBuilder.aggregation(agg[0]).aggregation(agg[1]).size(0);

// 2\. 得到覆盖率

final String indexName = getIndexName(exptId, hour);

final Search search = new Search.Builder(searchBuilder.toString())

.addIndex(indexName).addType(getType()).build();

final SearchResult result = jestClient.execute(search);

if(result.getResponseCode() != HttpUtils.STATUS_CODE_200){

// 请求出错

 log.warn(result.getErrorMessage());

return 0f;

}

final MetricAggregation aggregations = result.getAggregations();

// 3\. 解析结果

final long dividend ;

if(SampleRatio.ALL == sampleRatio){

dividend = aggregations.getValueCountAggregation(Constants.DIVIDEND).getValueCount();

}else {

dividend = aggregations.getFilterAggregation(Constants.DIVIDEND).getCount();

}

// 防止出现被除数为0时程序异常

if(dividend <= 0){

return 0f;

}

long divisor = aggregations.getFilterAggregation(Constants.DIVISOR).getCount();

return divisor / (float)dividend;

聚合

int label = 0;

final ExistsQueryBuilder existsQuery = QueryBuilders.existsQuery(fieldName);

// 包含指定特征的正样本数量

final BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();

final List<QueryBuilder> must = boolQuery.must();

// 计算样本数量

TermQueryBuilder labelQuery = null;

if(SampleRatio.POSITIVE == sampleRatio) {

// 计算正样本数量

 label = 1;

 labelQuery = QueryBuilders.termQuery(Constants.LABEL, label);

 must.add(labelQuery);

}else if(SampleRatio.NEGATIVE == sampleRatio) {

// 计算负样本数量

 labelQuery = QueryBuilders.termQuery(Constants.LABEL, label);

 must.add(labelQuery);

}

must.add(existsQuery);

final ValueCountAggregationBuilder existsCountAgg = AggregationBuilders.count(sampleRatio.getField());

existsCountAgg.field(fieldName);

final FilterAggregationBuilder filterAgg = AggregationBuilders.filter(aggName, boolQuery);

filterAgg.subAggregation(existsCountAgg);

return filterAgg;

上线效果

上线后表现完全满足预期,平均请求耗时在3秒左右,用户体验良好。感谢各位小伙伴的辛苦付出~~

下图是ES中部分索引的信息:


©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 230,527评论 6 544
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,687评论 3 429
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 178,640评论 0 383
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,957评论 1 318
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,682评论 6 413
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 56,011评论 1 329
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 44,009评论 3 449
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 43,183评论 0 290
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,714评论 1 336
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,435评论 3 359
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,665评论 1 374
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 39,148评论 5 365
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,838评论 3 350
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,251评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,588评论 1 295
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,379评论 3 400
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,627评论 2 380

推荐阅读更多精彩内容