强化学习的坑

深度强化学习有哪些坑?

1.样本利用率非常低;
2.最终表现不够好,经常比不过基于模型的方法;
3.好的奖励函数难以设计;
4.难以平衡“探索”和“利用”,以致算法陷入局部极小;
5.对环境的过拟合;
6.灾难性的不稳定性…
7.好的奖励函数难以设计和难以平衡“探索”和“利用”以致算法陷入局部极小是RL的固有缺陷。

有人点名指出,某些DRL代表性算法之所以在模拟器中取得了优秀却难以复现的表现,是因为作者们涉嫌在实验中修改模拟器的物理模型,却在论文中对此避而不谈。

另一位DRL研究者Matthew Rahtz则通过讲述自己试图复现一个DRL算法的坎坷历程来回应Alexirpan,让大家深刻体会了复现DRL算法有多么难[15]
“它更像是你在解决一个谜题,没有规律可循,唯一的方法是不断尝试,直到灵感出现彻底搞明白。……很多看上去无关紧要的小细节成了唯一的线索……做好每次卡住好几周的准备。”Rahtz在复现的过程中积累了很多宝贵的工程经验,但整个过程的难度还是让他花费了大量的金钱以及时间。他充分调动不同的计算资源,包括学校的机房资源、Google云计算引擎和FloydHub,总共花费高达850美元。可就算这样,原定于3个月完成的项目,最终用了8个月,其中大量时间用在调试上。

不基于模型强化学习的本质缺陷:

1 免模型方法无法从不带反馈信号的样本中学习,而反馈本身就是稀疏的,因此免模型方向样本利用率很低,而数据驱动的方法则需要大量采样。

2 免模型方法不对具体问题进行建模,而是尝试用一个通用的算法解决所有问题。而基于模型的方法则通过针对特定问题建立模型,充分利用了问题固有的信息。免模型方法在追求通用性的同时放弃这些富有价值的信息。

3.基于模型的方法针对问题建立动力学模型,这个模型具有解释性。而免模型方法因为没有模型,解释性不强,调试困难。

4 相比基于模型的方法,尤其是基于简单线性模型的方法,免模型方法不够稳定,在训练中极易发散。

基于模型:
基于模型的DRL方法相对而言不那么简单直观,RL与DL的结合方式相对更复杂,设计难度更高。

  1. 针对无法建模的问题束手无策。有些领域,比如NLP,存在大量难以归纳成模型的任务。在这种场景下,只能通过诸如R-max算法这样的方法先与环境交互,计算出一个模型为后续使用。但是这种方法的复杂度一般很高。近期有一些工作结合预测学习建立模型,部分地解决了建模难的问题,这一思路逐渐成为了研究热点。

  2. 建模会带来误差,而且误差往往随着算法与环境的迭代交互越来越大,使得算法难以保证收敛到最优解。

  3. 模型缺乏通用性,每次换一个问题,就要重新建模。

RL领域的实验平台还非常不成熟,在这样的测试环境中的实验实验结果没有足够的说服力。很多研究结论都未必可信,因为好性能的取得或许仅仅是因为利用了模拟器的bugs。此外,一些学者指出当前RL算法的性能评判准则也不科学。Ben Recht和Sham Kakade都对RL的发展提出了多项具体建议,包括测试环境、基准算法、衡量标准等[18,29]。可见RL领域还有太多需要改进和规范化。

当前RL的发展还处于初级阶段,不能包打天下。目前还没有一个通用的RL解决方案像DL一样成熟到成为一种即插即用的算法。不同RL算法在各自领域各领风骚。在找到一个普适的方法之前,我们更应该针对特定问题设计专门的算法,比如在机器人领域,基于贝叶斯RL和演化算法的方法(如CMAES[61])比DRL更合适。当然,不同的领域间应当互相借鉴与促进。RL算法的输出存在随机性,这是其“探索”哲学带来的本质问题,因此我们不能盲目 All in RL, 也不应该RL in All, 而是要找准RL适合解决的问题。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容