被__block修饰的对象类型的内存管理
使用以下代码,生成c++代码查看内部实现
typedef void (^Block)(void);
int main(int argc, const char * argv[]) {
@autoreleasepool {
__block Person *person = [[Person alloc] init];
Block block = ^ {
NSLog(@"%p", person);
};
block();
}
return 0;
}
来到源码查看__Block_byref_person_0
结构体及其声明
__Block_byref_person_0结构体
typedef void (*Block)(void);
struct __Block_byref_person_0 {
void *__isa; // 8 内存空间
__Block_byref_person_0 *__forwarding; // 8
int __flags; // 4
int __size; // 4
void (*__Block_byref_id_object_copy)(void*, void*); // 8
void (*__Block_byref_id_object_dispose)(void*); // 8
Person *__strong person; // 8
};
// 8 + 8 + 4 + 4 + 8 + 8 + 8 = 48
// __Block_byref_person_0结构体声明
__attribute__((__blocks__(byref))) __Block_byref_person_0 person = {
(void*)0,
(__Block_byref_person_0 *)&person,
33554432,
sizeof(__Block_byref_person_0),
__Block_byref_id_object_copy_131,
__Block_byref_id_object_dispose_131,
((Person *(*)(id, SEL))(void *)objc_msgSend)((id)((Person *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("Person"), sel_registerName("alloc")), sel_registerName("init"))
};
之前提到过__block
修饰的对象类型生成的结构体中新增加了两个函数void (*__Block_byref_id_object_copy)(void*, void*);
和void (*__Block_byref_id_object_dispose)(void*);
。这两个函数为__block
修饰的对象提供了内存管理的操作。
可以看出为void (*__Block_byref_id_object_copy)(void*, void*);
和void (*__Block_byref_id_object_dispose)(void*);
赋值的分别为__Block_byref_id_object_copy_131
和__Block_byref_id_object_dispose_131
。找到这两个函数
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
_Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
}
static void __Block_byref_id_object_dispose_131(void *src) {
_Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}
上述源码中可以发现__Block_byref_id_object_copy_131
函数中同样调用了_Block_object_assign
函数,而_Block_object_assign
函数内部拿到dst
指针即block
对象自己的地址值加上40个字节。并且_Block_object_assign
最后传入的参数是131,同block直接对对象进行内存管理传入的参数3,8都不同。可以猜想_Block_object_assign
内部根据传入的参数不同进行不同的操作的。
通过对上面__Block_byref_person_0
结构体占用空间计算发现__Block_byref_person_0
结构体占用的空间为48个字节。而加40恰好指向的就为person
指针。
也就是说copy函数会将person地址传入_Block_object_assign
函数,_Block_object_assign
中对Person对象进行强引用或者弱引用。
如果使用__weak修饰变量查看一下其中的源码
int main(int argc, const char * argv[]) {
@autoreleasepool {
Person *person = [[Person alloc] init];
__block __weak Person *weakPerson = person;
Block block = ^ {
NSLog(@"%p", weakPerson);
};
block();
}
return 0;
}
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__Block_byref_weakPerson_0 *weakPerson; // by ref
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_weakPerson_0 *_weakPerson, int flags=0) : weakPerson(_weakPerson->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
__main_block_impl_0
中没有任何变化,__main_block_impl_0
对weakPerson
依然是强引用,但是__Block_byref_weakPerson_0
中对weakPerson
变为了__weak
指针。
struct __Block_byref_weakPerson_0 {
void *__isa;
__Block_byref_weakPerson_0 *__forwarding;
int __flags;
int __size;
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
Person *__weak weakPerson;
};
也就是说无论如何block
内部中对__block
修饰变量生成的结构体都是强引用,结构体内部对外部变量的引用取决于传入block内部的变量是强引用还是弱引用。
mrc环境下,尽管调用了copy操作,__block
结构体不会对person
产生强引用,依然是弱引用。
int main(int argc, const char * argv[]) {
@autoreleasepool {
__block Person *person = [[Person alloc] init];
Block block = [^ {
NSLog(@"%p", person);
} copy];
[person release];
block();
[block release];
}
return 0;
}
上述代码person会先释放
block的copy[50480:8737001] -[Person dealloc]
block的copy[50480:8737001] 0x100669a50
当block从堆中移除的时候。会调用dispose
函数,block块中去除对__Block_byref_person_0 *person;
的引用,__Block_byref_person_0
结构体中也会调用dispose
操作去除对Person *person;
的引用。以保证结构体和结构体内部的对象可以正常释放。