pytorch模型转keras模型

在这里插入图片描述

1. 概述

使用pytorch建立的模型,有时想把pytorch建立好的模型装换为keras,本人使用TensorFlow作为keras的backend

2. 依赖

依赖的标准库:

  • pytorch
  • keras
  • tensorflow
  • pytorch2keras

3. 安装方式

git clone https://github.com/nerox8664/pytorch2keras.git
python setup.py install

4. 代码

import numpy as np
import torch
from torch.autograd import Variable
from pytorch2keras import converter

class Pytorch2KerasTestNet(torch.nn.Module):
    def __init__(self):
        super(Pytorch2KerasTestNet, self).__init__()
        self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
        self.in1 = torch.nn.InstanceNorm2d(32, affine=True)
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        y = self.relu(self.in1(self.conv1(x)))
        return y


class ConvLayer(torch.nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride):
        super(ConvLayer, self).__init__()
        reflection_padding = kernel_size // 2
        self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
        self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)

    def forward(self, x):
        out = self.reflection_pad(x)
        
        print("conv2d")
        out = self.conv2d(out)
        return out

def check_error(output, k_model, input_np, epsilon=1e-5):
    pytorch_output = output.data.numpy()
    keras_output = k_model.predict(input_np)

    error = np.max(pytorch_output - keras_output)
    print('Error:', error)

    assert error < epsilon
    return error        

model   = Pytorch2KerasTestNet()
input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
input_var = Variable(torch.FloatTensor(input_np))
output = model(input_var)
k_model = converter.pytorch_to_keras(model, input_var, [(3, 224, 224,)], verbose=True)
k_model.summary()

max_error = 0
error = check_error(output, k_model, input_np)
if max_error < error:
    max_error = error
print('Max error: {0}'.format(max_error))

#保存模型
k_model.save('my_model.h5')

# 重新载入模型
from keras.models import load_model
import tensorflow as tf

model = load_model('my_model.h5',custom_objects={"tf": tf})
model.summary()

输出结果:

Layer (type)                 Output Shape              Param #   
=================================================================
input_0 (InputLayer)         (None, 3, 224, 224)       0         
_________________________________________________________________
5 (Lambda)                   (None, 3, 232, 232)       0         
_________________________________________________________________
6 (Conv2D)                   (None, 32, 224, 224)      7808      
_________________________________________________________________
7 (Lambda)                   (None, 32, 224, 224)      0         
_________________________________________________________________
output_0 (Activation)        (None, 32, 224, 224)      0         
=================================================================
Total params: 7,808
Trainable params: 7,808
Non-trainable params: 0

5. 最后

image
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容