事务
什么是事务
开启一个事务可以包含多条sql语句 这些sql语句要么同时成功,要么一个都别想成功 称之为事务的原子性
事务的作用
保证了对数据操作的安全性
事务的四大特性
ACID
A:原子性
一个事务是一个不可分割的单位,事务中包含的诸多操作,要么同时成功要么同时失败
C:一致性
事务必须是使数据库从一个一致性的状态变到另外一个一致性的状态,一致性跟原子性是密切相关的
I:隔离性
一个事务的执行不能被其他事务干扰,(即一个事务内部的操作及使用到的数据对并发的其他事务是隔离的,并发执行的事务之间也是互相不干扰的)
D:持久性
也叫"永久性"
一个事务一旦提交成功执行成功 那么它对数据库中数据的修改应该是永久的,接下来的其他操作或者故障不应该对其有任何的影响
如何使用事务
# 事务相关的关键字
# 1 开启事务
start transaction;
# 2 回滚(回到事务执行之前的状态)
rollback;
# 3 确认(确认之后就无法回滚了)
commit;
"""模拟转账功能"""
create table user(
id int primary key auto_increment,
name char(16),
balance int
);
insert into user(name,balance) values
('jason',1000),
('egon',1000),
('tank',1000);
# 1 先开启事务
start transaction;
# 2 多条sql语句
update user set balance=900 where name='jason';
update user set balance=1010 where name='egon';
update user set balance=1090 where name='tank';
#3 提交事务(提交之后,数据从内存刷到硬盘,回滚不了)
commit;
总结:当你想让多条sql语句保持一致性 要么同时成功要么同时失败 ,你就应该考虑使用事务
存储过程
存储过程就类似于python中的自定义函数,它的内部包含了一系列可以执行的sql语句,存储过程存放于MySQL服务端中,你可以直接通过调用存储过程触发内部sql语句的执行
基本使用
create procedure 存储过程的名字(形参1,形参2,...)
begin
sql代码
end
# 调用
call 存储过程的名字();
存储过程具体演示
delimiter $$
create procedure p1(
in m int, # 只进不出 m不能返回出去
in n int,
out res int # 该形参可以返回出去
)
begin
select tname from teacher where tid>m and tid<n;
set res=666; # 将res变量修改 用来标识当前的存储过程代码确实执行了
end $$
delimiter ;
# 针对形参res 不能直接传数据 应该传一个变量名
# 定义变量
set @ret = 10;
# 查看变量对应的值
select @ret;
在pymysql模块中如何调用存储过程呢?
import pymysql
conn = pymysql.connect(
host = '127.0.0.1',
port = 3306,
user = 'root',
passwd = '123456',
db = 'day48',
charset = 'utf8',
autocommit = True
)
cursor = conn.cursor(pymysql.cursors.DictCursor)
# 调用存储过程
cursor.callproc('p1',(1,5,10))
"""
@_p1_0=1
@_p1_1=5
@_p1_2=10
"""
# print(cursor.fetchall())
cursor.execute('select @_p1_2;')
print(cursor.fetchall())
索引
ps:数据都是存在与硬盘上的,查询数据不可避免的需要进行IO操作
索引:就是一种数据结构,类似于书的目录。意味着以后在查询数据的应该先找目录再找数据,而不是一页一页的翻书,从而提升查询速度降低IO操作
索引在MySQL中也叫“键”,是存储引擎用于快速查找记录的一种数据结构
- primary key 主键
- unique key 唯一索引
- index key 普通索引
注意foreign key不是用来加速查询用的,不在我们的而研究范围之内
上面的三种key,前面两种除了可以增加查询速度之外各自还具有约束条件,而最后一种index key没有任何的约束条件,只是用来帮助你快速查询数据
本质
通过不断的缩小想要的数据范围筛选出最终的结果,同时将随机事件(一页一页的翻),变成顺序事件(先找目录、找数据),也就是说有了索引机制,我们可以总是用一种固定的方式查找
一张表中可以有多个索引(多个目录)
索引虽然能够帮助你加快查询速度但是也有缺点
"""
1 当表中有大量数据存在的前提下 创建索引速度会很慢
2 在索引创建完毕之后 对表的查询性能会大幅度的提升 但是写的性能也会大幅度的降低
"""
索引不要随意的创建!!!
b+树
只有叶子节点存放的是真实的数据 其他节点存放的是虚拟数据 仅仅是用来指路的
树的层级越高查询数据所需要经历的步骤就越多(树有几层查询数据就需要几步)
一个磁盘块存储是有限制的
为什么建议你将id字段作为索引
1、占得空间少 一个磁盘块能够存储的数据多
2、那么久降低了树的高度 从而减少查询次数
聚集索引(primary key)
聚集索引指的就是主键
Innodb 只有两个文件 直接将主键存放在了idb表中
MyIsam 三个文件 单独将索引存在一个文件
辅助索引(unique,index)
查询数据的时候不可能一直使用到主键,也有可能会用到name,password等其他字段
那么这个时候你是没有办法利用聚集索引。这个时候你就可以根据情况给其他字段设置辅助索引(也是一个b+树)
"""
叶子节点存放的是数据对应的主键值
先按照辅助索引拿到数据的主键值
之后还是需要去主键的聚集索引里面查询数据
"""
覆盖索引
在辅助索引的叶子节点就已经拿到了需要的数据
# 给name设置辅助索引
select name from user where name='jason';
# 非覆盖索引
select age from user where name='jason';