Task10-向前分布算法和梯度提升决策树

1. 前向分步算法

前项分布算法可以解决分类问题,也可以解决回归问题。
(1)Adaboost的加法模型:
在Adaboost的基础上,将多个基分类器合并为一个复杂分类器,是通过计算每个基分类器的加权和。通常情况下这是一个复杂的优化问题,很难通过简单的凸优化的相关知识进行解决。而前向分步算法可以用来求解这种方式的问题,它的基本思路是:因为学习的是加法模型,如果从前向后,每一步只优化一个基函数及其系数,逐步逼近目标函数,那么就可以降低优化的复杂度。

(2)前向分布算法:
给定数据集T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}。损失函数L(y, f(x)),基函数集合\{b(x ; \gamma)\},我们需要输出加法模型f(x)

  • 初始化:f_{0}(x)=0
  • 对m = 1,2,...,M:
    • (a) 极小化损失函数:
      \left(\beta_{m}, \gamma_{m}\right)=\arg \min _{\beta, \gamma} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \gamma\right)\right)
      得到参数\beta_{m}\gamma_{m}
    • (b) 更新:
      f_{m}(x)=f_{m-1}(x)+\beta_{m} b\left(x ; \gamma_{m}\right)
  • 得到加法模型:
    f(x)=f_{M}(x)=\sum_{m=1}^{M} \beta_{m} b\left(x ; \gamma_{m}\right)

这样,前向分步算法将同时求解从m=1到M的所有参数\beta_{m}\gamma_{m}的优化问题简化为逐次求解各个\beta_{m}\gamma_{m}的问题。

(3) 前向分步算法与Adaboost的关系:
Adaboost算法是前向分步算法的特例,Adaboost算法是由基本分类器组成的加法模型,损失函数为指数损失函数。

2. 梯度提升决策树(GBDT)

(1) 基于残差学习的提升树算法:
接下来我们来探讨下如何使用加法模型+前向分步算法的框架实现回归问题。
在使用加法模型+前向分步算法的框架解决问题之前,我们需要首先确定框架内使用的基函数是什么,在这里我们使用决策树分类器。前面第二章我们已经学过了回归树的基本原理,树算法最重要是寻找最佳的划分点,分类树用纯度来判断最佳划分点使用信息增益(ID3算法),信息增益比(C4.5算法),基尼系数(CART分类树)。但是在回归树中的样本标签是连续数值,可划分点包含了所有特征的所有可取的值。所以再使用熵之类的指标不再合适,取而代之的是平方误差,它能很好的评判拟合程度。基函数确定了以后,我们需要确定每次提升的标准是什么。回想Adaboost算法,在Adaboost算法内使用了分类错误率修正样本权重以及计算每个基本分类器的权重,那回归问题没有分类错误率可言,也就没办法在这里的回归问题使用了,因此我们需要另辟蹊径。模仿分类错误率,我们用每个样本的残差表示每次使用基函数预测时没有解决的那部分问题。因此,我们可以得出如下算法:
输入数据集T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}, x_{i} \in \mathcal{X} \subseteq \mathbf{R}^{n}, y_{i} \in \mathcal{Y} \subseteq \mathbf{R},输出最终的提升树f_{M}(x)

  • 初始化f_0(x) = 0
  • 对m = 1,2,...,M:
    • 计算每个样本的残差:r_{m i}=y_{i}-f_{m-1}\left(x_{i}\right), \quad i=1,2, \cdots, N
    • 拟合残差r_{mi}学习一棵回归树,得到T\left(x ; \Theta_{m}\right)
    • 更新f_{m}(x)=f_{m-1}(x)+T\left(x ; \Theta_{m}\right)
  • 得到最终的回归问题的提升树:f_{M}(x)=\sum_{m=1}^{M} T\left(x ; \Theta_{m}\right)

(2) 梯度提升决策树算法(GBDT):
提升树利用加法模型和前向分步算法实现学习的过程,当损失函数为平方损失和指数损失时,每一步优化是相当简单的,也就是我们前面探讨的提升树算法和Adaboost算法。但是对于一般的损失函数而言,往往每一步的优化不是那么容易,针对这一问题,我们得分析问题的本质,也就是是什么导致了在一般损失函数条件下的学习困难。对比以下损失函数:
\begin{array}{l|l|l} \hline \text { Setting } & \text { Loss Function } & -\partial L\left(y_{i}, f\left(x_{i}\right)\right) / \partial f\left(x_{i}\right) \\ \hline \text { Regression } & \frac{1}{2}\left[y_{i}-f\left(x_{i}\right)\right]^{2} & y_{i}-f\left(x_{i}\right) \\ \hline \text { Regression } & \left|y_{i}-f\left(x_{i}\right)\right| & \operatorname{sign}\left[y_{i}-f\left(x_{i}\right)\right] \\ \hline \text { Regression } & \text { Huber } & y_{i}-f\left(x_{i}\right) \text { for }\left|y_{i}-f\left(x_{i}\right)\right| \leq \delta_{m} \\ & & \delta_{m} \operatorname{sign}\left[y_{i}-f\left(x_{i}\right)\right] \text { for }\left|y_{i}-f\left(x_{i}\right)\right|>\delta_{m} \\ & & \text { where } \delta_{m}=\alpha \text { th-quantile }\left\{\left|y_{i}-f\left(x_{i}\right)\right|\right\} \\ \hline \text { Classification } & \text { Deviance } & k \text { th component: } I\left(y_{i}=\mathcal{G}_{k}\right)-p_{k}\left(x_{i}\right) \\ \hline \end{array}
观察Huber损失函数:
L_{\delta}(y, f(x))=\left\{\begin{array}{ll} \frac{1}{2}(y-f(x))^{2} & \text { for }|y-f(x)| \leq \delta \\ \delta|y-f(x)|-\frac{1}{2} \delta^{2} & \text { otherwise } \end{array}\right.
针对上面的问题,Freidman提出了梯度提升算法(gradient boosting),这是利用最速下降法的近似方法,利用损失函数的负梯度在当前模型的值-\left[\frac{\partial L\left(y, f\left(x_{i}\right)\right)}{\partial f\left(x_{i}\right)}\right]_{f(x)=f_{m-1}(x)}作为回归问题提升树算法中的残差的近似值,拟合回归树。与其说负梯度作为残差的近似值,不如说残差是负梯度的一种特例。
以下开始具体介绍梯度提升算法:
输入训练数据集T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}, x_{i} \in \mathcal{X} \subseteq \mathbf{R}^{n}, y_{i} \in \mathcal{Y} \subseteq \mathbf{R}和损失函数L(y, f(x)),输出回归树\hat{f}(x)

  • 初始化f_{0}(x)=\arg \min _{c} \sum_{i=1}^{N} L\left(y_{i}, c\right)
  • 对于m=1,2,...,M:
    • 对i = 1,2,...,N计算:r_{m i}=-\left[\frac{\partial L\left(y_{i}, f\left(x_{i}\right)\right)}{\partial f\left(x_{i}\right)}\right]_{f(x)=f_{m-1}(x)}
    • r_{mi}拟合一个回归树,得到第m棵树的叶结点区域R_{m j}, j=1,2, \cdots, J
    • 对j=1,2,...J,计算:c_{m j}=\arg \min _{c} \sum_{x_{i} \in R_{m j}} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+c\right)
    • 更新f_{m}(x)=f_{m-1}(x)+\sum_{j=1}^{J} c_{m j} I\left(x \in R_{m j}\right)
  • 得到回归树:\hat{f}(x)=f_{M}(x)=\sum_{m=1}^{M} \sum_{j=1}^{J} c_{m j} I\left(x \in R_{m j}\right)

3. 代码实现

from sklearn.metrics import mean_squared_error
from sklearn.datasets import make_friedman1
from sklearn.ensemble import GradientBoostingRegressor

X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0)
X_train, X_test = X[:200], X[200:]
y_train, y_test = y[:200], y[200:]
est = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1,
    max_depth=1, random_state=0, loss='ls').fit(X_train, y_train)
mean_squared_error(y_test, est.predict(X_test))

运行结果:

5.009154859960321
from sklearn.datasets import make_regression
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
X, y = make_regression(random_state=0)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, random_state=0)
reg = GradientBoostingRegressor(random_state=0)
reg.fit(X_train, y_train)
reg.score(X_test, y_test)

运行结果:

0.43848663277068134
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容