用户画像

用户画像的准则

首先就是将自己企业的用户画像做个白描,告诉他这些用户“都是谁”“从哪来”“要去哪”。

首先,要设计唯一标识?

用户唯一标识是整个用户画像的核心。以一个App为例,它把“从用户开始使用APP到下单到售后整个所有的用户行为”进行串联,这样就可以更好地去跟踪和分析一个用户的特征。

设计唯一标识可以从这些项中选择:用户名、注册手机号、联系人手机号、邮箱、设备号、CookieID等。

其次,给用户打标签。

标签有很多,且不同的产品,标签的选择范围也不同,这么多的标签,怎样划分才能既方便记忆,又能保证用户画像的全面性呢?

可以从这4个维度来进行标签划分。

用户标签:它包括了性别、年龄、地域、收入、学历、职业等。这些包括了用户的基础属性。

消费标签:消费习惯、购买意向、是否对促销敏感。这些统计分析用户的消费习惯。

行为标签:时间段、频次、时长、访问路径。这些是通过分析用户行为,来得到他们使用App的习惯。

内容分析:对用户平时浏览的内容,尤其是停留时间长、浏览次数多的内容进行分析,分析出用户对哪些内容感兴趣,比如,金融、娱乐、教育、体育、时尚、科技等。

可以说,用户画像是现实世界中的用户的数学建模,正是将海量数据进行标签化,来得到精准的用户画像,从而为企业更精准地解决问题。

用户画像,可以带来什么业务价值呢?

从用户生命周期的三个阶段来划分业务价值,包括:获客、粘客和留客。

获客:如何进行拉新,通过更精准的营销获取客户。

粘客:个性化推荐,搜索排序,场景运营等。

留客:流失率预测,分析关键节点降低流失率。

如果按照数据流处理的阶段来划分用户画像建模的过程,可以分为数据层、算法层和业务层。
数据层指的是用户消费行为里的标签。可以打上“事实标签”,作为数据客观的记录。

算法层指的是透过这些行为算出的用户建模。可以打上“模型标签”,作为用户画像的分类标识。

业务层指的是获客、粘客、留客的手段。我们可以打上“预测标签”,作为业务关联的结果。

所以这个标签化的流程,就是通过数据层的“事实标签”,在算法层进行计算,打上“模型标签”的分类结果,最后指导业务层,得出“预测标签”。

饿了么的用户画像该如何设计?

如果是饿了么外卖的数据分析师,该如何制定用户标识ID,制定用户画像,以及基于用户画像可以做哪些业务关联?

首先,先回顾下饿了么外卖的产品背景,饿了么外卖是饿了么的核心产

基于用户画像实施的三个阶段,首先需要统一用户的唯一标识,那么究竟哪个字段可以作为用户标识呢?

当然是以用户的注册手机号为标准。

然后有了用户,用户画像都可以统计到哪些标签。按照“用户消费行为分析”的准则来进行设计。

用户标签:性别、年龄、家乡、居住地、收货地址、婚姻、宝宝信息、通过何种渠道进行的注册。

消费标签:餐饮口味、消费均价、团购等级、预定使用等级、外卖等级。

行为标签:点外卖时间段、使用频次、平均点餐用时、访问路径。

内容分析:基于用户平时浏览的内容进行统计,包括餐饮口味、优惠敏感度等。

当你有了“用户消费行为分析”的标签之后,就可以更好地理解业务了。

比如一个经常买沙拉的人,一般很少吃夜宵。同样,一个经常吃夜宵的人,吃小龙虾的概率可能远高于其他人。这些结果都是通过数据挖掘中的关联分析得出的。

有了这些数据,就可以预测用户的行为。

比如一个用户购买了“月子餐”后,更有可能购买婴儿水,同样婴儿相关的产品比如婴儿湿巾等的购买概率也会增大。

具体在业务层上,都可以基于标签产生哪些业务价值呢?

在获客上,我们可以找到优势的宣传渠道,如何通过个性化的宣传手段,吸引有潜在需求的用户,并刺激其转化。

在粘客上,如何提升用户的单价和消费频次,方法可以包括购买后的个性化推荐、针对优质用户进行优质高价商品的推荐、以及重复购买,比如通过红包、优惠等方式激励对优惠敏感的人群,提升购买频次。

在留客上,预测用户是否可能会从平台上流失。在营销领域,关于用户留存有一个观点——如果将顾客流失率降低5%,公司利润将提升25%~85%。可以看出留存率是多么的重要。用户流失可能会包括多种情况,比如用户体验、竞争对手、需求变化等,通过预测用户的流失率可以大幅降低用户留存的运营成本。

朋友圈用户画像

统一用户标志:微信账号包括(家人,同学,朋友,网友,客服)
用户标签:姓名,性别,年龄,家乡,添加渠道,微信签名,微信上地址选择
消费标签:点赞内容,评论内容,聊天内容
行为标签:点赞次数,评论次数,点赞的文章次数,关注公众号个数,微信朋友圈内容公布设置天数,点赞评论时间,聊天频次,聊天时间段,聊天时长,同属几个聊天群,
内容标签:点赞内容,评论内容,聊天内容,发布内容,点赞的文章内容,关注的公众号
获客:微信添加若非必加不可一般是看下对方的朋友圈内容,明显代购或太多没有营养的文章转发等不加
粘客:根据点赞文章内容和关注的公众号我方选择。若要留住对方,也是通过对方发布的朋友圈内容和点赞文章内容以及关注的公众号上找共同点
留客:要走的留不住,被拉黑了就洒脱点。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容