BackTracking

  1. Letter Combinations of a Phone Number
# Letter Combinations of a Phone Number
# Given a string containing digits from 2-9 inclusive, 
# return all possible letter combinations represent.
# mapping of digit to letters is given.

class Solution:
    def letterCombinations(self, digits):
        if not digits:
            return []
        dic = {"2":"abc", "3":"def", "4":"ghi", "5":"jkl", "6":"mno", "7":"pqrs", "8":"tuv", "9":"wxyz"}
        res = []
        self.dfs(digits, dic, 0, "", res)
        return res

    def dfs(self, digits, dic, index, path, res):
        if len(path) == len(digits):
            res.append(path)  #深度搜索到的每条str
            return 
        for i in range(index, len(digits)):
            for j in dic[digits[i]]:  # 数字逐位 遍历深入 至串长达到
                self.dfs(digits, dic, i+1, path+j, res)  # index & strPath
  1. Word Search II
# Word Search II
# Given a 2D board and a list of words from the dictionary, 
# find all words in the board.

# sequentially adjacent cell, 
# "adjacent": horizontally or vertically neighboring. 
# same letter not be used more than once in a word.

class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        WORD_KEY = '$'
        
        trie = {}
        for word in words:
            node = trie
            for letter in word:
                # retrieve the next node; If not found, create a empty node.
                node = node.setdefault(letter, {})
            # mark the existence of a word in trie node
            node[WORD_KEY] = word
        
        rowNum = len(board)
        colNum = len(board[0])
        
        matchedWords = []
        
        def backtracking(row, col, parent):    
            
            letter = board[row][col]
            currNode = parent[letter]
            
            # check if we find a match of word
            word_match = currNode.pop(WORD_KEY, False)
            if word_match:
                # also we removed the matched word to avoid duplicates,
                #   as well as avoiding using set() for results.
                matchedWords.append(word_match)
            
            # Before the EXPLORATION, mark the cell as visited 
            board[row][col] = '#'
            
            # Explore the neighbors in 4 directions, i.e. up, right, down, left
            for (rowOffset, colOffset) in [(-1, 0), (0, 1), (1, 0), (0, -1)]:
                newRow, newCol = row + rowOffset, col + colOffset     
                if newRow < 0 or newRow >= rowNum or newCol < 0 or newCol >= colNum:
                    continue
                if not board[newRow][newCol] in currNode:
                    continue
                backtracking(newRow, newCol, currNode)
        
            # End of EXPLORATION, we restore the cell
            board[row][col] = letter
        
            # Optimization: incrementally remove the matched leaf node in Trie.
            if not currNode:
                parent.pop(letter)

        for row in range(rowNum):
            for col in range(colNum):
                # starting from each of the cells
                if board[row][col] in trie:
                    backtracking(row, col, trie)
        
        return matchedWords    
  1. WildCard Matching
# WildCard Matching
# s; pattern p; wildcard pattern ? *
class Solution:
    def isMatch(self, s, p):
        length = len(s)
        if len(p) - p.count('*') > length:
            return False
        dp = [True] + [False]*length
        for i in p:
            if i != '*':
                for n in reversed(range(length)):
                    dp[n+1] = dp[n] and (i == s[n] or i == '?')
            else:
                for n in range(1, length+1):
                    dp[n] = dp[n-1] or dp[n]
            dp[0] = dp[0] and i == '*'
        return dp[-1]
  1. Regular Expression Matching
# 10. Regular Expression Matching
# Input: string (s) and a pattern (p)
# support for '.' and '*'
# Input:
# s = "aab"
# p = "c*a*b"
# Output: true
# Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore, it matches "aab".

class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        dp = [[False] * (len(s) + 1) for _ in range(len(p) + 1)]
        dp[0][0] = True
        for i in range(1, len(p)):
            dp[i + 1][0] = dp[i - 1][0] and p[i] == '*'
        for i in range(len(p)):
            for j in range(len(s)):
                if p[i] == '*':
                    dp[i + 1][j + 1] = dp[i - 1][j + 1] or dp[i][j + 1]
                    if p[i - 1] == s[j] or p[i - 1] == '.':
                        dp[i + 1][j + 1] |= dp[i + 1][j]
                else:
                    dp[i + 1][j + 1] = dp[i][j] and (p[i] == s[j] or p[i] == '.')
        return dp[-1][-1]
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容