SVD

摘要

SVD (Singular Value Decomposition,奇异值分解)揭示了线性变换的本质,对一个矩阵进行奇异值的过程,就是将一个复杂的,难以直观理解的线性变换,分解为多步直观的变换的过程。矩阵的奇异值分解,可以与傅里叶变换类比。

1 SVD的涵义

我们已经知道矩阵A的奇异值分解形式如下
A=U \Sigma V^T
其中UV均为酉矩阵(正交矩阵在复数域的拓展,即U^T=U^{-1})。
事实上,对于矩阵A的奇异值分解,将一个通用线性变换分解成为了“旋转\to 拉伸 \to 旋转”三个简单的变换,接下来将通过一个实例展示这个过程。
\begin{aligned} A &= \begin{bmatrix} 1&-2\\ 1&2\\ \end{bmatrix} \\ &=\begin{bmatrix} -0.707&-0.707\\ 0.707& -0.707\ \end{bmatrix} \begin{bmatrix} 2.828&0\\ 0& 1.414\ \end{bmatrix} \begin{bmatrix} 0&-1\\ 1& 0\ \end{bmatrix} \end{aligned}
为了展示线性变换(矩阵A)的效果,我们以单位圆为载体。若\vec x_i表示单位圆上的任意一点,则对单位圆上的每一点进行运算:A \vec x_i,变换效果如下:

单位圆线性变换效果

线性变换分解

奇异值分解流程

由此可见,奇异值的大小在线性变换中的作用极为重要。在上述实例中,若奇异值,则经过拉伸变换之后的单位圆将接近一条直线,这条直线就是当时对应的线性变换结果。

2 SVD的求解

由于“实对称矩阵必定可以正交对角化”,则对于任意矩阵A的奇异值分解过程可按照下述流程进行。
\begin{align} AA^T= U \Sigma^2 U^T \\ A^TA = V\Sigma^2V^T \end{align}

A=U\Sigma V^T

AV = U \Sigma

\begin{align} &U = \begin{bmatrix} \vec u_1&\vec u_2 &\dots &\vec u_i \end{bmatrix} \\ &V = \begin{bmatrix} \vec v^T_1\\ \vec v^T \\ \vdots \\ \vec v^T_j \end{bmatrix} \\ &\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots\\ 0&\sigma_2 & \dots \\ \dots & \dots &\sigma_k \end{bmatrix} \end{align}
其中\vec u_i \vec v_i均为列向量。
则有
\begin{align} &A\vec v_i=\sigma_i \vec u_i \end{align}

3 SVD的应用

  • 图像压缩
  • PCA(Principal Component Analysis)
  • 线性超定方程组的最小二乘解
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容