对于java的并发编程来说,我们都知道Thread和runnable,这是创建一个线程最基本的两种方法,但是这两种方法创建的线程是不支持对线程的执行结果进行返回的。虽然我们可以通过传递引用的方式实现,但是实现起来未免太复杂。这个时候我们可能要用到Callable,callable是一个JDK提供的一个支持线程返回结果的一个接口,通过实现call方法,能返回指定泛型的变量。
class CallableTask implements Callable<Integer>{
@Override
public Integer call() throws Exception {
System.out.println("call runing");
Thread.sleep(5000);
return 1;
}
}
public class CallableTest {
public static void main(String args[]){
CallableTask task = new CallableTask();
try {
System.out.println("call start");
ExecutorService service = Executors.newSingleThreadExecutor();
Future fu = service.submit(task);
System.out.println(fu.get());
service.shutdown();
System.out.println("call end");
} catch (Exception e) {
e.printStackTrace();
}
}
}
可以通过线程池去实现任务的提交,任务提交后会返回future对象,通过get方法即可获得返回值。
注意:这里其实是不推荐调用call方法的,实际上直接调用call方法和runnable的run方法效果是一样的。
其实JDK提供了一种更好的提交方式,它可以将Runnable和Callable进行封装,以便于提交到线程池。并且可以对线程有更好的控制,比如取消线程的执行,它就是FutureTask。
FutureTask只是简单的对Callable以及Runnable进行了封装,提供了额外的对线程控制的功能以及阻塞获取请求结果的功能,其实对于线程池的submit方法,对于每一个任务都会封装成一个FutureTask来运行。
/**
* @throws RejectedExecutionException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
/**
* Returns a <tt>RunnableFuture</tt> for the given callable task.
*
* @param callable the callable task being wrapped
* @return a <tt>RunnableFuture</tt> which when run will call the
* underlying callable and which, as a <tt>Future</tt>, will yield
* the callable's result as its result and provide for
* cancellation of the underlying task.
* @since 1.6
*/
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new FutureTask<T>(callable);
}
那么FutureTask到底是怎么实现的呢?
首先看构造方法:
/**
* Creates a <tt>FutureTask</tt> that will, upon running, execute the
* given <tt>Callable</tt>.
*
* @param callable the callable task
* @throws NullPointerException if callable is null
*/
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
sync = new Sync(callable);
}
/**
* Creates a <tt>FutureTask</tt> that will, upon running, execute the
* given <tt>Runnable</tt>, and arrange that <tt>get</tt> will return the
* given result on successful completion.
*
* @param runnable the runnable task
* @param result the result to return on successful completion. If
* you don't need a particular result, consider using
* constructions of the form:
* {@code Future<?> f = new FutureTask<Void>(runnable, null)}
* @throws NullPointerException if runnable is null
*/
public FutureTask(Runnable runnable, V result) {
sync = new Sync(Executors.callable(runnable, result));
}
FutureTask可以接受Runnable以及Callable两种类型的参数,在初始化的时候内部构造了一个Sync的AQS实现类的实例,对于runnable类型的线程需要转化成Callable,同时可以指定返回值。
当我们再观察其他方法的时候,几乎都是委托Sync去处理的,那么重点就放在了Sync上。
首先看看Sync里面有几个状态:
/** State value representing that task is ready to run */
private static final int READY = 0;//准备就绪
/** State value representing that task is running */
private static final int RUNNING = 1;//正在运行
/** State value representing that task ran */
private static final int RAN = 2;//运行完毕
/** State value representing that task was cancelled */
private static final int CANCELLED = 4;//任务取消
一个FutureTask的实例就在上面几个状态之间进行轮转,当执行线程时调用run方法,run方法又委托Syn的innerRun方法:
/**
* Sets this Future to the result of its computation
* unless it has been cancelled.
*/
public void run() {
sync.innerRun();
}
//首先CAS将status置为RUNING,可以防止结束前重复提交
void innerRun() {
if (!compareAndSetState(READY, RUNNING))
return;
runner = Thread.currentThread();
//double check 防止在此之前被cancel
if (getState() == RUNNING) { // recheck after setting thread
V result;
try {
result = callable.call();
} catch (Throwable ex) {
setException(ex);
return;
}
//设置结果
set(result);
} else {
//清除runner,唤醒阻塞线程
releaseShared(0); // cancel
}
}
当执行线程的时候,首先做的是将AQS的状态由READY变成RUNNING,因为Sync是AQS的实现类,这个也是改变AQS的状态,改变状态之后进行double check,此时是为了防止在这之前有Cancel的请求。如果Cancel了,那么releaseShared清除状态并且唤醒get等待的线程。如果为Running状态,接下来调用call方法,这里也就是为什么要提交到线程池执行了,注意call方法调用只是一个方法调用,而不像Thread.start那样会直接返回,并且开启新线程执行。当执行完毕之后,调用Set,Set其实也是委托给Sync的innerSet:
/**
* Sets the result of this Future to the given value unless
* this future has already been set or has been cancelled.
* This method is invoked internally by the <tt>run</tt> method
* upon successful completion of the computation.
* @param v the value
*/
protected void set(V v) {
sync.innerSet(v);
}
void innerSet(V v) {
for (;;) {
int s = getState();
if (s == RAN)
return;
//收到取消信号,不设置结果,直接返回
if (s == CANCELLED) {
// aggressively release to set runner to null,
// in case we are racing with a cancel request
// that will try to interrupt runner
releaseShared(0);
return;
}
//设置结果,并设置当前的状态为RAN
if (compareAndSetState(s, RAN)) {
//设置内容
result = v;
//唤醒阻塞线程
releaseShared(0);
done();
return;
}
}
}
这里在Set的时候呢,首先也是判断状态如果是RAN直接返回,如果取消了,那么唤醒get等待的线程,并且返回。如果都没有,那么设置FutureTask状态为RAN,表示线程执行完了,同时设置restult为返回值,唤醒所有的等待线程。
上面其实在执行前和执行后都做了Cancel的检查,如果取消,无论执行前后都是没有结果set给result的。
接下来看看是怎么实现阻塞等待结果的,首先看get方法:
/**
* @throws CancellationException {@inheritDoc}
*/
public V get() throws InterruptedException, ExecutionException {
return sync.innerGet();
}
V innerGet() throws InterruptedException, ExecutionException {
//共享锁,没有完成会阻塞在这
acquireSharedInterruptibly(0);
//如果已经取消,那么抛出异常
if (getState() == CANCELLED)
throw new CancellationException();
if (exception != null)
throw new ExecutionException(exception);
return result;
}
同样是委托机制,其实关键在于acquireSharedInterruptibly方法。
/**
* Acquires in shared mode, aborting if interrupted. Implemented
* by first checking interrupt status, then invoking at least once
* {@link #tryAcquireShared}, returning on success. Otherwise the
* thread is queued, possibly repeatedly blocking and unblocking,
* invoking {@link #tryAcquireShared} until success or the thread
* is interrupted.
* @param arg the acquire argument
* This value is conveyed to {@link #tryAcquireShared} but is
* otherwise uninterpreted and can represent anything
* you like.
* @throws InterruptedException if the current thread is interrupted
*/
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0) //如果目前是RAN状态或者是Cancel状态的话标识已经完成或者结束
doAcquireSharedInterruptibly(arg);//等待Task运行结束,唤醒阻塞队列
}
/**
* Implements AQS base acquire to succeed if ran or cancelled
*/
protected int tryAcquireShared(int ignore) {
return innerIsDone() ? 1 : -1;
}
boolean innerIsDone() {
return ranOrCancelled(getState()) && runner == null;
}
private boolean ranOrCancelled(int state) {
return (state & (RAN | CANCELLED)) != 0;
}
其实这里还是使用了委托的机制,同时呢采用了一个共享锁去实现同步,共享锁有一个特点就是允许多个线程获取锁,其实这里对于get操作,其实多个线程同时get是没有问题的,并且如果使用独占锁会降低性能,这里引入共享锁感觉是比较巧妙的。
上面代码将的是,首先线程回去check当前FutureTask的状态,如果是RAN或者Cancel,表示线程已经结束,那么直接返回,如果当前不是上面状态,证明此时线程没执行或者没执行完,那么需要阻塞等待,所以执行doAcquireSharedInterruptibly,让线程等待,等待innerSet之后或者Cancel之后的releaseShared。releaseShared会逐步的唤醒所有阻塞在get上的线程,这样所以线程都能get到结果。提高了效率。
FutureTask实现不但简单而且巧妙(比如巧妙的运用了共享锁),最重要的是使用的也是十分广泛:
做异步处理,对于下载,或者生成PDF这种比较重的场景,我们可以通过将请求异步化,抽象成FutureTask提交到线程池中运行,从而避免占用大量的Worker线程(Tomcat或者RPC框架),导致后面的请求阻塞。
对于服务的同步调用,我们可以利用FutureTask进行服务的并行调用,而在最后进行结果的汇总,这样就能变串行调用为并行调用,大大的减小请求的时间(类似于Fork-Join)。
最后,异步线程处理和并行处理是个好东西,需要用起来!!!。