排序(上)

排序(冒泡、插入、选择)

​ --为什么插入排序比冒泡排序更受欢迎?

一、排序算法

最经典最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。

排序算法 时间复杂度 是否基于比较
冒泡、插入、选择 O(n^2)
快排、归并 O(n^2)
桶、计数、基数 O(n)

二、如何分析一个排序算法

  • 排序算法的执行效率
  1. 最好情况、最坏情况、平均情况时间复杂度
  2. 时间复杂度的系数、常数、低阶
  3. 比较次数和交换(移动)次数
  • 排序算法的内存消耗

原地排序:特指空间复杂度是O(1)的排序算法。冒泡、插入、选择都是原地排序算法。

  • 排序算法的稳定性

稳定排序算法: 一组数据经过排序后相同的数据的位置不发生改变。

三、冒泡排序(Bubble Sort)

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。

我们要对一组数据 4,5,6,3,2,1,从小到到大进行排序。第一次冒泡操作的详细过程就是这样:

冒泡排序

可以看出,经过一次冒泡操作之后,6 这个元素已经存储在正确的位置上。要想完成所有数据的排序,我们只要进行 6 次这样的冒泡操作就行了。

冒泡排序

实际上,刚讲的冒泡过程还可以优化。当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。

冒泡排序

排序的移动次数为逆序度。

逆序度 = 满有序度 - 有序度

4,5,6,3,2,1

上例 有序度为3,{(4, 5), (4, 6), (5, 6)}

则需要移动次数为 n*(n-1)/2 - 初始有序度,即6*(6-1)/2 - 3 = 12 次。

Go实现:

func bubblesort (nums []int) {
    var (
        n int // length of []int
        flag bool // the flag of data exchange
        temp int
    )
    n = len(nums)
    for i:=0; i<n; i++ {
        flag = false
        for j := 0; j < n-i-1; j++ {
            if nums[j+1] < value {
                temp = nums[j]
                nums[j] = nums[j+1]
                nums[j+1] = temp
                flag = true
            }
        }
        if !flag {
          break
        }
    }
}

四、插入排序(Insertion Sort)

我们将数组中的数据分为两个区间,已排序区间未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

插入排序

插入排序移动元素的次数跟冒泡的计算方法一致。

上例 有序度为5, 移动次数为10次。

插入排序

Go实现:

func InsertionSort(n []int) {
    for i:=1; i<len(n); i++ {
        value := n[i]
        j := i-1
        for ; j>=0; j++ {
            if n[j] > value {
                n[j+1] = n[j]
            } else {
                break
            }
        }
        n[j+1] = value
    }
}

五、选择排序(Selection Sort)

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。

选择排序

Go 实现:

func SelectSort(n []int) {
    for i := 0; i < len(n); i++ {
        j := len(n) - 1
        min := n[j]
        x := j
        for ; j >= i; j-- {
            if n[j] < min {
                min = n[j]
                x = j
            }
        }
        temp := n[i]
        n[i] = n[x]
        n[x] = temp
    }
}

六、 冒泡 VS 插入

冒泡排序和插入排序的时间复杂度都是 O(n^2),都是原地排序算法,为什么插入排序要比冒泡排序更受欢迎呢?

冒泡排序不管怎么优化,元素交换的次数是一个固定值,是原始数据的逆序度。插入排序是同样的,不管怎么优化,元素移动的次数也等于原始数据的逆序度。

从代码实现上来看:

// 冒泡排序中数据的交换操作:
if (a[j] > a[j+1]) { // 交换
   int tmp = a[j];
   a[j] = a[j+1];
   a[j+1] = tmp;
   flag = true;
}
 
// 插入排序中数据的移动操作:
if (a[j] > value) {
  a[j+1] = a[j];  // 数据移动
} else {
  break;
}

冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要 3 个赋值操作,而插入排序只需要 1 个。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343