在python中使用ROC曲线和PR曲线进行分类

Ref: How to Use ROC Curves and Precision-Recall Curves for Classification in Python
Ref: 推荐阅读:一个超级清楚的知乎回答

基本概念

ROC: receiver operating characteristic curve
PRC: precision-recall curve

ROC曲线和Precision-Recall曲线是帮助解释分类(主要是binary)预测建模问题的概率预测的诊断工具。

ROC Curves summarize the trade-off between the true positive rate and false positive rate for a predictive model using different probability thresholds.
Precision-Recall curves summarize the trade-off between the true positive rate and the positive predictive value for a predictive model using different probability thresholds.

  • ROC curves : observations are balanced between each class
  • Precision-recall curves: imbalanced datasets.

Predicting probability

In a classification problem, we may decide to predict the class values directly. Alternately, it can be more flexible to predict the probabilities for each class instead. Why? It can provide the capability to choose and even calibrate the threshold for how to interpret the predicted probabilities.

two types of errors when making a prediction for a binary/ two-class classification problem:

  • FP: predict an event when there was no event
  • FN: predict no event when there was an event

A common way to compare models that predict probabilities for two classes is to use a ROC curve.

ROC Curve

sensitvity: true positive rate = TP /(TP+FN)

false-positive rate = FP / (FP+TN) = 1- specificity
specificity = TN/ (FP+TN)

accuracy = (TP + TN) / (TP+TN+FP+FN)
在binary classification especially when we are interested in minioriry class, accuracy is not that useful.. .e.g in our case, 90% accuracy negative

precision = TP / (TP + FN) .
TP/golden set =P(Y =1/ Y^ = 1)

recall = TP / (TP + FP)
TP / retrieved set = P(Y^ =1 / Y=1)

presicion and recall are trade off.
if we want to cover more sample, then it's easier to make mistakes -> high recall -> low precision
if we have concerned model -> low recall -> high precision

AUC: area under the curve. Can be used as a summary of the model skill. AUC的概率意义是随机取一对正负样本,正样本得分大于负样本的概率.

ROC: x-axis: false positive rate, y-axis: true positive rate. aks false alarm rate vs hit rate.

Smaller values on the x-axis of the plot indicate lower false positives and higher true negatives.
Larger values on the y-axis of the plot indicate higher true positives and lower false negatives

when we predict a binary outcome, it is either a correct prediction (true positive) or not (false positive). There is a tension between these options, the same with a true negative and false negative.

A skilful model will assign a higher probability to a randomly chosen real positive occurrence than a negative occurrence on average. This is what we mean when we say that the model has skill. Generally, skilful models are represented by curves that bow up to the top left of the plot.

A no-skill classifier is one that cannot discriminate between the classes and would predict a random class or a constant class in all cases. A model with no skill is represented at the point (0.5, 0.5). A model with no skill at each threshold is represented by a diagonal line from the bottom left of the plot to the top right and has an AUC of 0.5.

A model with perfect skill is represented at a point (0,1). A model with perfect skill is represented by a line that travels from the bottom left of the plot to the top left and then across the top to the top right.

An operator may plot the ROC curve for the final model and choose a threshold that gives a desirable balance between the false positives and false negatives.

F1 score:

F1 = 2 * Recall * precision / (recall +precision)
control recall and precision.
recall -> risk -> sensitivity -> True positive rate 希望是1
precision -> cost -> specificity -> false positive rate 希望是0

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355