JD数据比赛的一些思路

1:题目要求

参赛者需要使用京东多个品类下商品的历史销售数据,构建算法模型,预测用户在未来5天内,对某个目标品类下商品的购买意向。对于训练集中出现的每一个用户,参赛者的模型需要预测该用户在未来5天内是否购买目标品类下的商品以及所购买商品的SKU_ID。评测算法将针对参赛者提交的预测结果,计算加权得分。

——————————————————————————————

https://github.com/daoliker/JData

这是个热心的参赛者的代码和流程,个人觉得还不错,有兴趣的同学可以去看看,我们一起来讨论讨论.

——————————————————————————————

现在在以下的过程中描述下我和我的小伙伴的思路过程:

首先对于购物,我们要从几个简单的角度出发,这样的角度通常都是根据我们的日常生活.比如说我们各类行为的转化与购买的关系(比如浏览,加入购物车,关注商品)等行为,另外一方面就是已经购买的此类商品的重复购买率,另外一个很关键的一点就是性别与商品销售之间的关联程度.

接下来就应该进行特征的提取:

比如包括用户特征,商品的特征属性,用户的历史行为特征等数据

接下来最重要的一步就是模型的构建:

1:商品候选集合的确定,首先要确定用户和商品的结合关系,这里的商品最好是以单个商品为例,不应该是整个的商品集合,这里边可能用到的方法比如关联分析,协同过滤这类的

2:模型的选择—分类

3:代码编写与参数调整(具体代码部分比赛完成后我们将会上传到我们的GitHub上,请各位多多指教)

4:效果的预测估计和迭代优化

下面的实际过程按照上述的操作顺序进行整理:

1:用户ID数据的预处理

用户行为数据,京东提供的JData_Action_201602.csv中的user_id是浮点型,都是带了个.0的浮点型,这个事就特别蛋疼,直接跟JData_Action_201602.csv相关联很麻烦,其实是我们强迫症看着不爽,所以就用了几个action文件把数据规范化了,这样心里才美滋滋.

1:格式化user_ID[使用AWK命令,gsub函数]

2:用户行为合并

原始的数据中,用户的行为是每一行是一条数据,无法形成行为序列,这样又得处理了,心里难受100分钟,所以这里又得加上了中间数据的处理,便于分析用户的商品浏览到购买行为的全过程,这里给文件字段说明是'user_id','sku_id','time','model_id','type','cate','brand'七个字段,但解析的过程中发现,有不少记录按照逗号分割后,是6个,例如:

266079.0,138778,2016-01-31 23:59:02,,1,8,403

266079.0,138778,2016-01-31 23:59:03,0,6,8,403

200719.0,61226,2016-01-31 23:59:07,,1,8,30

这样就很尴尬,发现是第一步处理的时候导致部分空值的丢失,所以就又得重新改程序,这里一并完成使用user_ID的处理在脚本中实现

2:用户维度的聚合

用户维度,在同一个商品的行为序列再次聚合,一个商品分为一个元组

3:正样本的提取

首先,什么是正负样本?

正样本:有过非购买行为,且有购买行为的用户记录,针对同一种的商品(剁手党)

负样本:有过浏览的行为,但是最终没有购买的样本的行为数据(浏览党)

初步的目标,就是从有非购买行为,且有购买行为的用户中,分析出其中隐藏的规律,并利用这个规律,对其他行为的用户进行购买行为的预测

以上就是我们思考的大致思路,因为是自己的理解,可能有不当之处,欢迎大家批评指出。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容