R中的金融数据日期处理

Source:https://grollchristian.wordpress.com/2013/04/22/time-series-data-in-r/

Handling time series data in R
In this blog post I want to write some thoughts about handling time series data in R. In contrast to cross-sectional data, in time series applications each observation has an additional component besides it’s value: the point of time. This requires some additional efforts, for example:

x-axis has to be labeled with dates instead of numbers
vectors are better sliced with respect to dates instead of indices, as this is more natural to humans
concatenation of column vectors requires chronological ordering with respect to dates
There are two formats that seem to me most practical: zoo objects and data frames. Zoo objects manage to store respective date specifications separately from the core data, while still providing a very convenient API for slicing, merging or ad-hoc plots. Data frames, however, are first choice for high-quality ggplots, while dates usually are stored in a separate column among the other data as well. This way, data can be easily reshaped with melt() into the pattern required by ggplot.

Let’s look at some examples.

First, set up some R session, respective packages loaded.

rm(list=ls())
library(zoo)
library(reshape)
library(ggplot2)
Now, we want to familiarize ourselves with the way R handles dates. Internally, R has its own (numeric) calendar, with beginning set to

as.Date(1)
[1] "1970-01-02"
When we want to create dates associated with financial time series, we have to account for the fact that stock markets are closed on weekends. This can easily be done by relying on the internal numeric calendar of R.

Get weekday of calendar origin:

weekdays(as.Date(1))
[1] "Friday"
Some transformation in other direction:

as.numeric(as.Date("2013-01-01"))
[1] 15706
Hence, all numeric dates with value 2 or 3 modulo 7 are weekends:

weekdays(as.Date(2:3))
weekdays(as.Date(9:10))
[1] "Saturday" "Sunday"

[1] "Saturday" "Sunday"
An easy function to check for weekends is

is.weekend <- function(x) ((as.numeric(x)-2) %% 7) < 2
Create sequence of dates

dates <- seq(as.Date("2013-01-01"),as.Date("2013-01-31"),
by = "1 day")
weekdays(dates[4:7])
[1] "Friday" "Saturday" "Sunday" "Monday"
Delete dates of weekends

business_days <- dates[!is.weekend(dates)]
weekdays(business_days[4:7])
[1] "Friday" "Monday" "Tuesday" "Wednesday"
Or, with just one line

business_days2 <- dates[!(weekdays(dates) %in% c('Saturday','Sunday'))]
weekdays(business_days2[4:7])
[1] "Friday" "Monday" "Tuesday" "Wednesday"
Let’s now create some artificial time series data, which we will use to show some main features.

nAss <- 800
nObs <- length(business_days)
log_ret <- rnorm(nObs*nAss, mean=0.01, sd=1.2)
log_ret <- matrix(log_ret, ncol=nAss, nrow=nObs, byrow = T)

cumulate log returns to get log prices: 2 indicates columnwise

log_p <- apply(log_ret, 2, cumsum)

create zoo object

data_zoo <- zoo( log_p, order.by=as.Date(business_days))
names(data_zoo) <- 1:nAss

plot zoo object: with transparent colors

colors <- topo.colors(nAss, alpha = 0.1)

plot(data_zoo, plot.type = "single", col = colors)

plot zoo object with slightly transparent black color

colr <- rgb(0.1,0.1,0.1,0.2, names = NULL, maxColorValue = 1)
plot(data_zoo, plot.type = "single", col=colr, pch=16)

As can be seen, plotting of zoo objects will include weekends, too. This can heavily distort the graphics through inclusion of artificial patterns, especially in the case of relatively short time series. An alternative way of plotting also based on R’s standard and fast plotting capabilities is:

colr <- rgb(0.1,0.1,0.1,0.2, names = NULL, maxColorValue = 1)
matplot(data_zoo, type="l", xaxt="n", col=colr, lty
= 1, lwd = 1, ylab = "prices")
timelabels<-format(index(data_zoo))
axis(1,at=1:23,labels=timelabels)

As long as we just want to take a first look at the patterns of our data, we usually want to rely on fast and on-the-fly visualization techniques like with the code examples given above. However, once pictures have to be made ready for publishing, where certain aspects of the data need to be emphasized in the most appealing way, the standard graphics routines can become insufficient, and more extensive packages like ggplot2 could come into focus. The advanced features, however, do come with a downside: creation of graphics will require significantly more computational time.

ggplot2 requires data given in data frames. Hence, in order to plot a zoo object with ggplot2, we first have to convert it.

df1 <- as.data.frame(data_zoo, time=index(data_zoo))

df2 <- data.frame(time=time(data_zoo), data_zoo)
These two conversion have one major difference: they differ in their dimensions.

dim(df1)
dim(df2)
[1] 23 800

[1] 23 801
The reason for this is that the second call additionally includes the time dimension as a separate column.

df1[1:2,1:4]
df2[1:2,1:4]
1 2 3 4
2013-01-01 2.015704 1.1656187 -1.1083786 -1.149100
2013-01-02 2.980257 -0.3672188 0.8720595 -1.124556
time X1 X2 X3
2013-01-01 2013-01-01 2.015704 1.1656187 -1.1083786
2013-01-02 2013-01-02 2.980257 -0.3672188 0.8720595
This way, dates are already better accessible for ggplot2 than when they are stored as row.names only. It now will be easier to convert the data into “long format”, so that ggplot2 can make use of its capabilities of faceting the data with respect to different dimensions.

df3 <- melt(df2, id.vars = "time")
df3[1:4,]
time variable value
1 2013-01-01 X1 2.015704
2 2013-01-02 X1 2.980257
3 2013-01-03 X1 3.556476
4 2013-01-04 X1 3.200586
The fastest way to achieve long format is to directly manipulate the data during conversion from zoo object to data frame.

df4 <- data.frame(time = time(data_zoo),
variable = rep(names(data_zoo), each = nrow(data_zoo)),
value = as.vector(data_zoo))
df4[1:4,]
time variable value
1 2013-01-01 1 2.015704
2 2013-01-02 1 2.980257
3 2013-01-03 1 3.556476
4 2013-01-04 1 3.200586
For example, it is now where easy to group the data with respect to either point of time or stock.

p <- ggplot(df4, aes(time,value,group=variable)) +
geom_line(alpha = 0.2)
p

p <- ggplot(df4, aes(time,value,group=time)) + geom_boxplot()
p

However, we again should get rid of weekends first.

p <- ggplot(df4, aes(ordered(format(df4$time, format = '%d%b')),value,group=time)) +
geom_boxplot()
p + opts(axis.text.x=theme_text(angle=-90))

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容