tag11:排序 八大经典排序算法

八大经典排序算法详解:

复杂度

1、插入

将元素插入到合适的位置,复杂度O(n^2)

2、冒泡

不断比较相邻元素,冒泡排序最好的时间复杂度为O(n):一遍。冒泡排序的最坏时间复杂度为O(n^2):nb遍。因此冒泡排序总的平均时间复杂度为O(n^2)。

3、选择

不断选择最大、最小的元素放在不断增加的位置,复杂度O(n^2)

4、希尔排序:

1)按距离分组,组内进行插入排序

2)减小增量长度,当增量为1时,数组元素全部被排序。

希尔排序不稳定,时间复杂度 平均时间 O(nlogn) 最差时间O(n^2)

5、归并排序

1)将数组分成两个部分,每个部分递归进行归并排序(即会不断拆分,然后将拆分后的部分不断合并,最终得到一个有序数组),也就是将一个很多数据的数组分成前后两部分,然后不断递归归并排序,再合并,最后返回有序的数组。

将待排序的数组分成前后两个部分,再递归的将前半部分数据和后半部分的数据各自归并排序,得到的两部分数据,然后使用merge合并算法(算法见代码)将两部分算法合并到一起。

merge合并算法

归并排序的最好、最坏和平均时间复杂度都是O(nlogn),而空间复杂度是O(n),比较次数介于(nlogn)/2和(nlogn)-n+1,赋值操作的次数是(2nlogn)。因此可以看出,归并排序算法比较占用内存,但却是效率高且稳定的排序算法。

6、快速排序

快速排序使用分治法从数列中挑出一个元素,作为 “基准”(pivot)重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

7、堆排序(Heap Sort)

预备知识:

二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树)。 二叉堆有两种:最大堆和最小堆。 大根堆:父结点的键值总是大于或等于任何一个子节点的键值; 小根堆:父结点的键值总是小于或等于任何一个子节点的键值。 二叉堆一般用数组来表示。

例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便於寻找父节点和子节点。 

堆排序是一种选择排序,其时间复杂度为O(nlogn)。堆排序是不稳定的。

1)构建最大堆;

2)交换堆顶元素和最后一个元素,产生第一个有序区元素,调整最大堆(调整的过程是选择排序)后产生第二个;

3)依次遍历所有元素,产生有序数组。

8、排序

桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。

桶排序图示

参考资料

1、八大经典排序算法详解 https://zhuanlan.zhihu.com/p/335048580

2、动画图解十个经典排序算法 https://www.sohu.com/a/258291348_291099

3、图文+动画讲解排序算法总结!! https://blog.csdn.net/WantFlyDaCheng/article/details/100645795

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容