DES

DES 算法简介

DES 加密算法属于对称密码范畴,那么什么是对称密码呢?加密和解密过程中所使用的密钥相同,就是对称密码,而且大多数对称密码算法,加密解密过程都是互逆的。DES 算法是一种数据加密算法,明文按照 64 位进行分组,分组后的明文与密钥按位替代或交换的方法形成密文组。 密钥的长度是 64 位(其实是56位,其中有8位是奇偶校验位)。

DES 工作模式简介

1 . ECB(电子密码密码本模式)

这是最原始的一种加密工作模式,将明文分组成64位,与密钥长度相同,然后按照加密算法加密,得到 64位密文,最后将所有加密后的密文连接在一起即可,各段之间互不影响(当最后一段不足64位是要补足64位在进行计算)

可见,这种模式的优点是实现起来简单,有利于并行运算,但是缺点是安全性比较低。

2 . CBC (密文链接模式)

这种模式相比于 ECB 就比较复杂了,让我们来看看它是如何加密的

    1. 首先将数据按照8个字节一组进行分组得到D1D2......Dn(若数据不是8的整数倍,用指定的PADDING数据补位)
    2. 第一组数据D1与初始化向量I异或后的结果进行DES加密得到第一组密文C1(初始化向量I为全零)
    3. 第二组数据D2与第一组的加密结果C1异或以后的结果进行DES加密,得到第二组密文C2
    4. 之后的数据以此类推,得到Cn
    5. 按顺序连为C1C2C3......Cn即为加密结果。

这种加密模式相比于上一中比较安全一些,但是有一个致命的缺点,就是误差延续性,就是说只要有一个地方的密文出现错误,那么底下的密文就都会出现错误,为什么会这样?仔细看看加密过程就能明白,这也就是为什么这种模式叫做链接模式。

当然还有其他的模式,就不一一介绍了,一般还是利用以上两种模式。

DES 填充模式

  NoPadding    
  API或算法本身不对数据进行处理,加密数据由加密双方约定填补算法。例如若对字符串数据进行加解密,可以补充\0或者空格,然后trim。

   PKCS5Padding   
   加密前:数据字节长度对8取余,余数为m,若m>0,则补足8-m个字节,字节数值为8-m,即差几个字节就补几个字节,字节数值即为补充的字节数,若为0则补充8个字节的8

填充模式就用于当明文不是64的倍数的时候,由于在加密的过程中需要对明文进行分块,所以需要选择填充模式。

DES 的使用

1 . 和 Hmac 算法一样,想要使用 DES,首先要获取密钥,这需要借助于 JDK 自带的 KeyGenerator

public static byte[] initKey() throws Exception {
    KeyGenerator keyGenerator = KeyGenerator.getInstance("DES");
    keyGenerator.init(56); // 56 可填可不填

    SecretKey secretKey = keyGenerator.generateKey();
    return secretKey.getEncoded();
}

2 . 接下来就是 DES 加密过程

public static byte[] encryptDES(byte[] key, byte[] data) throws Exception {

        SecretKey secretKey = new SecretKeySpec(key, "DES");

        Cipher cipher = Cipher.getInstance("DES");
        cipher.init(Cipher.ENCRYPT_MODE, secretKey);
        byte[] resultBytes = cipher.doFinal(data);
        return resultBytes;

    }

传进去一个 helloworld 看看结果

public static void main(String[] args) throws Exception {
        String data = "helloworld";
        byte[] key = initKey();

        byte[] resultBytes = encryptDES(key, data.getBytes());

        String resultString = byteToHexString(resultBytes);

        System.out.println(resultString);

    }

结果为

215f9748bf31d5dc3d4eb5b77107643b

既然 DES 是用于数据加密,那么我们总应该能把数据还原成明文把,不然其意义何在呢?其实解密过程和加密过程几乎一模一样,如下所示

public static String decryptDES(byte[] key, byte[] data) throws Exception {
        SecretKey secretKey = new SecretKeySpec(key, "DES");

        Cipher cipher = Cipher.getInstance("DES");
        cipher.init(Cipher.DECRYPT_MODE, secretKey);

        byte[] resultBytes = cipher.doFinal(data);

        return new String(resultBytes);
    }

这个时候传进来的 key 必须和加密时使用的 key 是相同的,而且这个时候传进来的 data 也必须是加密过后的密文。

咦,这个时候我们发现,我们开头介绍的加密模式和填充模式好像都没用到,其实我们一般是使用默认就可以了,如果有特殊需要,可以这样使用

Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");

DES加密过后的数据在以前是不可能被破解的,但是由于计算机的发展,DES 加密过得数据在如今完全可在24小时内被破解,所以在 DES 的基础上有延伸出了 3DES 和 AES,这两种算法将留到以后再介绍~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容

  • 本文主要介绍移动端的加解密算法的分类、其优缺点特性及应用,帮助读者由浅入深地了解和选择加解密算法。文中会包含算法的...
    苹果粉阅读 11,459评论 5 29
  • 什么是对称密码算法 网络安全通信中要用到两类密码算法,一类是对称密码算法,另一类是非对称密码算法。对称密码算法有时...
    edison0428阅读 28,531评论 2 7
  • 0x01 目录 常见编码: ASCII编码 Base64/32/16编码 shellcode编码 Quoted-p...
    H0f_9阅读 12,647评论 2 17
  • 一、Base64 原理: base64的编码都是按字符串长度,以每3个8bit的字符为一组, 然后针对每组,首先获...
    谢谢生活阅读 4,788评论 7 33
  • 如果你芳龄25以上,还没有靠谱的男朋友,你试着打个电话回家给任何一个超过40岁的长辈,我敢打赌十句话里面,有超过4...
    彭家菇凉阅读 521评论 1 3