HashMap源码详解

这篇文章打算详细理一下HashMap的源码,可能会比较长,基于JDK1.8

HashMap数据结构

HashMap的数据结构一句话就是 数组+链表+红黑树

首先HashMap是一个数组,俗称Hash桶,每个桶有可能是一个链表,也有可能是一棵红黑树(当链表长度达到8就会转换成红黑树),如下图所示(图片来自网络)


https://img2018.cnblogs.com/blog/757939/201911/757939-20191124173143661-254130649.jpg

table就是一个Hash桶,当一个键值对要put,通过hash算法和高位运算及取模运算来定位该键值对的存储位置。有时两个key会定位到相同的一个Hash桶,就发生了Hash碰撞,当hash算法计算结果越分散均匀,Hash碰撞的概率就越小,Map存储效率就越高。

当发生Hash碰撞,HashMap采用了链地址法,就是数组加链表的结合,每一个Hash桶都是一个链表,如果发生冲突,则将数据接在链表下面。Java8增加了红黑树来存储数据,在极端情况下,大量数据非常凑巧的放在同一个Hash桶下,这时对索引就会产生很大的负担,所以当链表长度达到8时,就会将链表转换成红黑树,提高查询性能。

上图每一个矩形都是一个存放数据的节点Node,本质是键值对,有两种,如果是链表,则是Node类,如果是红黑树,则是TreeNode类,TreeNode继承了Node类(Node和TreeNode都是HashMap的静态内部类)。Node类的源码字段定义如下

/**
 * Basic hash bin node, used for most entries.  (See below for
 * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 */
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;

    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
    // 省略其他方法...
}

这里的 hash 值是HashMap对key自身的hashCode值进行重新计算的新的Hash值,计算方式如下,key自身的hashCode值的高16位与低16位进行异或操作,即对key进行高位计算(让高16位也参与计算,为了计算出更加分散的hash值)

/**
 * Computes key.hashCode() and spreads (XORs) higher bits of hash
 * to lower.  Because the table uses power-of-two masking, sets of
 * hashes that vary only in bits above the current mask will
 * always collide. (Among known examples are sets of Float keys
 * holding consecutive whole numbers in small tables.)  So we
 * apply a transform that spreads the impact of higher bits
 * downward. There is a tradeoff between speed, utility, and
 * quality of bit-spreading. Because many common sets of hashes
 * are already reasonably distributed (so don't benefit from
 * spreading), and because we use trees to handle large sets of
 * collisions in bins, we just XOR some shifted bits in the
 * cheapest possible way to reduce systematic lossage, as well as
 * to incorporate impact of the highest bits that would otherwise
 * never be used in index calculations because of table bounds.
 */
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

红黑树的TreeNode类字段定义源码如下:

    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
        // 省略大量TreeNode的方法
    }

parent、left、right ,表示红黑树当前节点的父节点,左孩子节点,右孩子节点。boolean red,表示当前节点是否为红色。在变成红黑树之前,这个hash桶是一个链表,从HashMap.Node可以看出Node节点只维护了下一个节点的引用,也就是next 。在变成红黑树的时候,这里多了个prev,维护当前节点还是链表中的Node节点时的上一个节点,用来恢复成链表时使用,所以实际上TreeNode是一个红黑树节点,也是一个双向链表的节点。其次 TreeNode 是HashMap的静态内部类,包内可见,不可被继承,并且继承至 LinkedHashMap.Entry 。而LinkedHashMap.Entry这个类又是继承 HashMap.Node 这个内部类。

这里的设计不明白的是,为什么不直接继承 HashMap.Node ,而是要继承 LinkedHashMap.Entry

    /**
     * HashMap.Node subclass for normal LinkedHashMap entries.
     */
    static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }

可以看到 LinkedHashMap.Entry也是继承HashMap.Node,多了两个 before 和 after 字段,这是为了维护 LinkedHashMap 的双向链表的功能。说明 HashMap.TreeNode 就拥有双向链表的能力,可是TreeNode增加了一个prev属性来存储前一个节点,加上从Node继承过来的next属性,说明即使不继承LinkedHashMap.Entry也拥有双向链表的能力,从其他方法也能看出来,使用的也是 pre 和 next 这两个属性,而不是 before 和 after 这两个属性,即从LinkedHashMap.Entry继承过来的两个属性是完全没有用到的。所以不明白这样继承的意义何在,相当于TreeNode多了两个用不到的引用。目前网上还没有找到合理的解释,stackoverflow有一个提问就是关于该问题,不过Answer不太理解
why in Java8 the TreeNode subclass in HashMap extends LinkedHashMap.Entry instead of directly extending HashMap's Node subclass?

HashMap属性

一个类的属性成员很重要,以下就来解释一波HashMap属性成员

  1. HashMap的默认的初始容量是16,也就是数组的长度,并从注释可以看出容量大小必须是2的幂次方
/**
 * The default initial capacity - MUST be a power of two.
 */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
  1. HashMap的最大容量,为2的30次幂减1
/**
 * The maximum capacity, used if a higher value is implicitly specified
 * by either of the constructors with arguments.
 * MUST be a power of two <= 1<<30.
 */
static final int MAXIMUM_CAPACITY = 1 << 30;
  1. 默认的负载因子,为0.75,当HashMap中的元素个数达到了这个阈值(容量大小 * 负载因子),则会进行扩容
/**
 * The load factor used when none specified in constructor.
 */
static final float DEFAULT_LOAD_FACTOR = 0.75f;
  1. 一个桶存储的数据格式从链表转换成红黑树的阈值为8,即在一个桶中链表长度达到8,就会转换成红黑树
/**
 * The bin count threshold for using a tree rather than list for a
 * bin.  Bins are converted to trees when adding an element to a
 * bin with at least this many nodes. The value must be greater
 * than 2 and should be at least 8 to mesh with assumptions in
 * tree removal about conversion back to plain bins upon
 * shrinkage.
 */
static final int TREEIFY_THRESHOLD = 8;
  1. 一个桶存储的数据格式从红黑树还原成链表的阈值为6,即在一个桶中,一棵红黑树存储的数据量小于等于6时,这个桶就会从红黑树还原成链表。
/**
 * The bin count threshold for untreeifying a (split) bin during a
 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 * most 6 to mesh with shrinkage detection under removal.
 */
static final int UNTREEIFY_THRESHOLD = 6;
  1. 一个桶从链表转换成红黑树时,容量的最小值为64,即当一个桶中的链表长度达到8了,可是这时容量(数组长度)没有达到64,此时不会转换成树,而是进行扩容。且这个值不能小于 4 * TREEIFY_THRESHOLD
/**
 * The smallest table capacity for which bins may be treeified.
 * (Otherwise the table is resized if too many nodes in a bin.)
 * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 * between resizing and treeification thresholds.
 */
static final int MIN_TREEIFY_CAPACITY = 64;
  1. 实际存储元素的数组桶,大小必须为2的幂次倍
/**
 * The table, initialized on first use, and resized as
 * necessary. When allocated, length is always a power of two.
 * (We also tolerate length zero in some operations to allow
 * bootstrapping mechanics that are currently not needed.)
 */
transient Node<K,V>[] table;
  1. 迭代器对象
/**
 * Holds cached entrySet(). Note that AbstractMap fields are used
 * for keySet() and values().
 */
transient Set<Map.Entry<K,V>> entrySet;
  1. HashMap元素的个数
/**
 * The number of key-value mappings contained in this map.
 */
transient int size;
  1. HashMap的修改次数,如对元素的增删改,这个值在使用迭代器时会用到,实现快速失败策略。
/**
 * The number of times this HashMap has been structurally modified
 * Structural modifications are those that change the number of mappings in
 * the HashMap or otherwise modify its internal structure (e.g.,
 * rehash).  This field is used to make iterators on Collection-views of
 * the HashMap fail-fast.  (See ConcurrentModificationException).
 */
transient int modCount;
  1. 对数组桶进行扩容时的阈值(=容量*负载因子),当HashMap中的size(元素个数)达到这个值时,就会进行扩容
/**
 * The next size value at which to resize (capacity * load factor).
 *
 * @serial
 */
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
int threshold;
  1. 负载因子,当元素个数和容量的比例超过这个比例,就会进行扩容,默认为0.75,负载因子越大,HashMap的填充程度就越高,也就是能容纳更多的元素,但是索引效率就会降低,空间复杂度也会降低;负载因子越小,容纳更少的元素,越容易扩容,所以会对空间造成浪费,但是索引效率高,而默认值0.75是对空间和时间的一个平衡值,一般不进行修改,直接使用默认值
/**
 * The load factor for the hash table.
 *
 * @serial
 */
final float loadFactor;

HashMap之构造方法

共有四种构造方法

  1. 无参,只做了一件事情,将负载因子赋值为默认的值
/**
 * Constructs an empty <tt>HashMap</tt> with the default initial capacity
 * (16) and the default load factor (0.75).
 */
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
  1. 传入容量值(即数组长度),指定默认的负载因子,调用另一个构造方法
/**
 * Constructs an empty <tt>HashMap</tt> with the specified initial
 * capacity and the default load factor (0.75).
 *
 * @param  initialCapacity the initial capacity.
 * @throws IllegalArgumentException if the initial capacity is negative.
 */
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
  1. 传入容量值和负载因子,进行验证并将负载因子进行赋值,然后将容量大小值暂时赋给threshold(阈值),这里的threshold并不是真正的阈值,在第一次resize时,会重新计算threshold的值,注意:第一次put的时候是一定会resize的,因为数组table在第一次put时才会被初始化
/**
 * Constructs an empty <tt>HashMap</tt> with the specified initial
 * capacity and load factor.
 *
 * @param  initialCapacity the initial capacity
 * @param  loadFactor      the load factor
 * @throws IllegalArgumentException if the initial capacity is negative
 *         or the load factor is nonpositive
 */
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

上面的 this.threshold = tableSizeFor(initialCapacity) 方法是计算出比initialCapacity大,且最小的2的幂次数,如传入的容量值为22,这里会自动计算成32,因为HashMap的容量大小必须为2的幂次数,源码如下

/**
 * Returns a power of two size for the given target capacity.
 */
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
  1. 传入一个Map,将该Map中的key, value都put到当前的HashMap中
/**
 * Constructs a new <tt>HashMap</tt> with the same mappings as the
 * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
 * default load factor (0.75) and an initial capacity sufficient to
 * hold the mappings in the specified <tt>Map</tt>.
 *
 * @param   m the map whose mappings are to be placed in this map
 * @throws  NullPointerException if the specified map is null
 */
public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

/**
 * Implements Map.putAll and Map constructor
 *
 * @param m the map
 * @param evict false when initially constructing this map, else
 * true (relayed to method afterNodeInsertion).
 */
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    int s = m.size();
    if (s > 0) {
        if (table == null) { // pre-size
            float ft = ((float)s / loadFactor) + 1.0F;
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                     (int)ft : MAXIMUM_CAPACITY);
            if (t > threshold)
                threshold = tableSizeFor(t);
        }
        else if (s > threshold)
            resize();
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}

根据传入Map的size,计算当前HashMap的容量,遍历Map将Key一个个put到当前HashMap中。

HashMap的put操作

put 方法实际调用的是putVal 方法,跟随源码一步步解释:

/**
 * Associates the specified value with the specified key in this map.
 * If the map previously contained a mapping for the key, the old
 * value is replaced.
 *
 * @param key key with which the specified value is to be associated
 * @param value value to be associated with the specified key
 * @return the previous value associated with <tt>key</tt>, or
 *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 *         (A <tt>null</tt> return can also indicate that the map
 *         previously associated <tt>null</tt> with <tt>key</tt>.)
 */
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
/**
 * Implements Map.put and related methods
 *
 * @param hash hash for key
 * @param key the key
 * @param value the value to put
 * @param onlyIfAbsent if true, don't change existing value
 * @param evict if false, the table is in creation mode.
 * @return previous value, or null if none
 */
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}
  1. 参数解释:
  • hash: 对key的hashCode值重新计算的hash值
  • key: key值
  • value: value值
  • onlyIfAbsent: 如果是true,则HashMap中已经存在这个key,并且这个key对应的value不为空时,就不会进行put的覆盖操作。
  • evict: 用于LinkedHashMap中的尾部操作,这里没有实际意义。
  1. 如果table(Hash桶数组)为空,进行扩容,实际上当我们构造一个HashMap对象时,table是没有初始化的,真正初始化扩容是在第一次put的时候
if ((tab = table) == null || (n = tab.length) == 0)
    n = (tab = resize()).length;
  1. 当要插入的key所对应Hash桶为空,则直接新建一个Node放在这个桶里面。(n - 1) & hash这个操作实际上是hash算法的第三步,取模操作,判断应该存放在哪一个桶下面
if ((p = tab[i = (n - 1) & hash]) == null)
    tab[i] = newNode(hash, key, value, null);
  1. 当要插入的key与计算出的对应的Hash桶的第一个节点相等,则直接进行赋值,p在这里指向对应Hash桶的第一个节点的引用,e变量是最终要插入的节点引用
if (p.hash == hash &&
    ((k = p.key) == key || (key != null && key.equals(k))))
    e = p;
  1. 如果对应的Hash桶的第一个节点为TreeNode(红黑树节点类),表示这个Hash桶是一棵红黑树,则以红黑树的方法进行添加节点,红黑树的操作这里不展开
else if (p instanceof TreeNode)
    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
  1. 对链表进行遍历,如果下一个节点为空,表示到链表结尾了,则直接新建一个节点接到链表最后面,然后去判断链表长度是否达到阈值(8),达到则转换成红黑树,操作就算完成了。否则不为空则判断是否跟当前要插入的节点相同,如果相同表示这个节点已经存在了,直接停止循环,后面会对这个节点进行覆盖操作
 else {
    for (int binCount = 0; ; ++binCount) {
        if ((e = p.next) == null) {
            p.next = newNode(hash, key, value, null);
            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                treeifyBin(tab, hash);
            break;
        }
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
            break;
        p = e;
    }
}
  1. 针对已经存在key的情况做处理,e如果有值,则表示找到了一个跟要插入的key相同的节点,如果原本节点的值为空,或者onlyIfAbsent为false则进行覆盖操作,并返回原本的值。
if (e != null) { // existing mapping for key
    V oldValue = e.value;
    if (!onlyIfAbsent || oldValue == null)
        e.value = value;
    afterNodeAccess(e);
    return oldValue;
}
  1. 增加HashMap修改次数,判断总节点个数是否达到阈值(threshold),达到进行扩容操作
++modCount;
if (++size > threshold)
    resize();
afterNodeInsertion(evict);

afterNodeInsertion(evict); 和 afterNodeAccess(e); 是空函数,它存在主要是为了LinkedHashMap的一些后续处理工作。

// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
void afterNodeRemoval(Node<K,V> p) { }

流程图如下:


image.png

HashMap之remove

先看下HashMap的remove方法

/**
 * Removes the mapping for the specified key from this map if present.
 *
 * @param  key key whose mapping is to be removed from the map
 * @return the previous value associated with <tt>key</tt>, or
 *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 *         (A <tt>null</tt> return can also indicate that the map
 *         previously associated <tt>null</tt> with <tt>key</tt>.)
 */
public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}

removeNode 方法根据 key 匹配,如果匹配成功,则删除,返回删除的value值。否则返回null。而实际上,如果返回null也可以表示为匹配成功,只不过匹配的是 key 为 null value也为null 的Node节点(HashMap允许key和value为null的,key为null的hash值是0,所以是放在第一个Hash桶中)。

其实删除的过程也包含了查找的过程,先找出来,然后删除,如下是removeNode方法:

   /**
     * Implements Map.remove and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored
     * @param matchValue if true only remove if value is equal
     * @param movable if false do not move other nodes while removing
     * @return the node, or null if none
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key); 
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            // 找出节点后执行删除操作
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode) // 以红黑树的方式删除节点
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

参数解析:

  • hash :key的hash值
  • key :节点的key
  • value : 节点的value值
  • matchValue : 为true时,需被删除的节点的Value值与给定的value一致,才删除
  • movable : 删除节点之后是否移动(在删除红黑树节点时使用)
  1. 先做判空处理:保证数组桶不为空,也元素个数大于0,且待删除的节点所在的hash桶也不为空((n - 1) & hash 取模计算数组桶下标)
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
  1. 判断首节点是否是待删除节点,node节点就是需要删除的节点引用
if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
  1. 如果是红黑树节点,调用红黑树的方式找出这个节点
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key); 
  1. 如果是普通节点,则遍历链表找出这个节点
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
  1. 找出节点后执行删除操作
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode) 
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); // 以红黑树的方式删除节点
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;  // 增加修改次数
                --size;              // 减少元素个数
                afterNodeRemoval(node);  // 提供给LinkedHashMap的后续操作
                return node;
            }

总的流程就是 根据key找出节点 -> 然后删除节点。找出节点时先常规性的判空操作,顺便根据hash值定位出Hash桶。先判断首节点的key是否匹配,匹配则直接删除,然后再遍历Hash桶中的其他节点。如果这个Hash桶中的节点是TreeNode,则以红黑树的方式去查找节点,这个方式实际是调用了find方法。如果是普通的Node节点(单向链表),则遍历链表匹配节点。找出节点之后,就删除了它,如果是红黑树则使用红黑树的方式删除节点。afterNodeRemoval方法是空的方法,在HashMap中没有意义,在LinkedHashMap中有具体的实现。

HashMap之扩容resize

HashMap的扩容resize方法是HashMap非常重要的一个方法,当Key的数量达到阈值的时候,为了保持查询效率,HashMap会进行扩容,将原本的Hash桶数量变为原本的两倍,并将原本的Key重新计算放在新的Hash桶中。我们先看一下源码,在一步步解析。

/**
 * Initializes or doubles table size.  If null, allocates in
 * accord with initial capacity target held in field threshold.
 * Otherwise, because we are using power-of-two expansion, the
 * elements from each bin must either stay at same index, or move
 * with a power of two offset in the new table.
 *
 * @return the table
 */
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}
  1. 首先看一下这三个条件处理。
if (oldCap > 0) {
    if (oldCap >= MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return oldTab;
    }
    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
             oldCap >= DEFAULT_INITIAL_CAPACITY)
        newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
    newCap = oldThr;
else {               // zero initial threshold signifies using defaults
    newCap = DEFAULT_INITIAL_CAPACITY;
    newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
  • 第一个if表示有容量,该map已经存在key了,已经不是第一次扩容了。容量和阈值都变为原来的两倍,如果超过最大值,就取最大值。
  • 接下来两个条件都表示是第一次扩容,第二个 else if 条件表示在调用构造方法创建实例时,传了参数。在构造方法篇,我们讲到,如果传了参数,则会把传进来的initialCapacity(容量)值暂时存放在threshold(阈值)变量中,实际上值表示的是容量,所以threshold是有值的。这里的操作就是直接把threshold值赋给newCap(新的容量)
  • 第三个条件则表示第一次扩容,且创建HashMap时是没有传参数的,在构造方法篇中讲到,无参的构造方法只做了一件事情,将负载因子赋值为默认的值,所以threshold(阈值)是没有值的,所以这里就将容量和阈值都设置成默认的值
  1. 重新计算threshold(阈值)
if (newThr == 0) {
    float ft = (float)newCap * loadFactor;
    newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
              (int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
  1. 由于数组是不可变的,扩容时就需要新建一个新的数组,大小为新的容量newCap。接下来的操作就是遍历将旧数组里面的数据移到新的数组中

有数据的Hash桶总共三种情况

  • 第一种:如果Hash桶中只有一个key,则直接赋值到新的Hash桶中
if (e.next == null)
    newTab[e.hash & (newCap - 1)] = e;

其中的 e.hash & (newCap - 1) 为取模操作,重新计算的数组下标,进行存放

  • 第二种:如果Hash桶中是一课红黑树,则使用红黑树的操作方法
else if (e instanceof TreeNode)
    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);

split方法如下:

/**
 * Splits nodes in a tree bin into lower and upper tree bins,
 * or untreeifies if now too small. Called only from resize;
 * see above discussion about split bits and indices.
 *
 * @param map the map
 * @param tab the table for recording bin heads
 * @param index the index of the table being split
 * @param bit the bit of hash to split on
 */
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
    TreeNode<K,V> b = this;
    // Relink into lo and hi lists, preserving order
    TreeNode<K,V> loHead = null, loTail = null;
    TreeNode<K,V> hiHead = null, hiTail = null;
    int lc = 0, hc = 0;
    for (TreeNode<K,V> e = b, next; e != null; e = next) {
        next = (TreeNode<K,V>)e.next;
        e.next = null;
        if ((e.hash & bit) == 0) {
            if ((e.prev = loTail) == null)
                loHead = e;
            else
                loTail.next = e;
            loTail = e;
            ++lc;
        }
        else {
            if ((e.prev = hiTail) == null)
                hiHead = e;
            else
                hiTail.next = e;
            hiTail = e;
            ++hc;
        }
    }

    if (loHead != null) {
        if (lc <= UNTREEIFY_THRESHOLD)
            tab[index] = loHead.untreeify(map);
        else {
            tab[index] = loHead;
            if (hiHead != null) // (else is already treeified)
                loHead.treeify(tab);
        }
    }
    if (hiHead != null) {
        if (hc <= UNTREEIFY_THRESHOLD)
            tab[index + bit] = hiHead.untreeify(map);
        else {
            tab[index + bit] = hiHead;
            if (loHead != null)
                hiHead.treeify(tab);
        }
    }
}

逻辑如下,在HashMap的数据结构中有讲到TreeNode的数据结构,我们知道TreeNode是一个红黑树的节点,也是一个双向链表的节点,所以这里就算按顺序遍历这个双向链表,将这个链表拆分成两个链表,一个低链表,一个高链表,起始点就是调用这个方法的TreeNode节点,也就是方法中的this,从resize方法知道,这个节点就是这个Hash桶的首节点,也就是红黑树中的根节点。

接下来判断低链表是否有值,并且判断低链表是否少于UNTREEIFY_THRESHOLD值(红黑树转链表的阈值,值为6),是的话就执行红黑树转成普通链表的方法 tab[index] = loHead.untreeify(map) ,否则的话,就是不需要将红黑树转成普通链表,直接将首节点赋予这个Hash桶,然后这时候判断高链表是否有值,如果有值,说明原来的双向链表被拆分了,那么这个时候低链表的红黑树性质被破坏了,就需要重新进行构建红黑树的操作 loHead.treeify(tab) 。同理高链表也进行同样的操作。

上面讲的可能有点乱,实际上就是如果一个Hash桶原本是一棵红黑树(也是双向链表),那么在扩容的时候可能会把这个棵树的节点分为两部分,一部分留在原来的Hash桶中,一部分移到往后移动 oldCap 的位置。然后再判断两部分的节点个数,如果少于6个,就执行 untreeify 方法,最后对两部分的节点进行重新构建红黑树的操作 treeify (下面单独讲)方法。

untreeify 方法如下:

/**
 * Returns a list of non-TreeNodes replacing those linked from
 * this node.
 */
final Node<K,V> untreeify(HashMap<K,V> map) {
    Node<K,V> hd = null, tl = null;
    for (Node<K,V> q = this; q != null; q = q.next) {
        Node<K,V> p = map.replacementNode(q, null);
        if (tl == null)
            hd = p;
        else
            tl.next = p;
        tl = p;
    }
    return hd;
}

这个方法是红黑树转普通链表的方法,逻辑就是遍历这个Hash桶的节点,将TreeNode全部转为Node即可,最后返回首节点。(虽然这个Hash桶是一棵红黑树,但也是双向链表,所以操作的时候直接按双向链表的性质操作即可)。

replacementNode方法如下:

// For conversion from TreeNodes to plain nodes
Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
    return new Node<>(p.hash, p.key, p.value, next);
}
  • 第三种:如果Hash桶中存放的是多个key的链表形式,则使用以下方式。
else { // preserve order
    Node<K,V> loHead = null, loTail = null; // 低链表的头和尾
    Node<K,V> hiHead = null, hiTail = null; // 高链表的头和尾
    Node<K,V> next;
    do {
        next = e.next;
        if ((e.hash & oldCap) == 0) {
            if (loTail == null)
                loHead = e;
            else
                loTail.next = e;
            loTail = e;
        }
        else {
            if (hiTail == null)
                hiHead = e;
            else
                hiTail.next = e;
            hiTail = e;
        }
    } while ((e = next) != null);
    if (loTail != null) {
        loTail.next = null;
        newTab[j] = loHead;
    }
    if (hiTail != null) {
        hiTail.next = null;
        newTab[j + oldCap] = hiHead;
    }
}

这里重点讲解链表形式下的数据转移:

将原本的链表拆分成两条链表 e.hash & oldCap 这个结果为 0 的节点放在低的链表中,为 1 的放在高的链表中,在新的数组中,低链表依然放在原本的位置,高链表放在 往后移 oldCap 个位置的地方。

最重要的一个操作为 ( e.hash & oldCap ), 因为cap(数组长度)是2的幂次数,所以cap的二进制只有一位最高位是1,例如16(10000),这一步的操作就是查看节点的hash值与oldCap为1的那一位相同的位置是1还是0,如果是0则移到新数组中相同的下标位置,如果为1则往后移动此次增加的数组长度的位置,,,这个过程也就是 rehash 的过程

举个栗子:

  1. 旧数组长度为16
  2. 有两个key的计算出来的hash分别为5和21,所以他们两个都存放在数组下标为5的Hash桶中,形成一个链表
  3. 现在要进行扩容,新数组长度为32,然后遍历这个链表,进行 (e.hash & oldCap) 操作,5(00101),旧数组长度16(10000),16的二进制为1的位数是右数第五位,而5的二进制右数第五位是0,所以5移动到新的数组中下标为5的Hash桶中。
  4. 另一个是21(10101),和16(10000)进行 & 的结果是1,也就是21的二进制右数第五位是1,所以21在移动到新的数组中是放在下标为(5+16)的Hash桶中

不好理解的话就理解,(e.hash & oldCap) 的结果如果是0,则下标位置不变,如果是1则下标位置增加oldCap个位置。

这里的代码设计,是基于数组长度cap一定是2的幂次数才成立,这也是HashMap将数组长度(容量)设计成2的幂次数的原因之一

这里的解析是看了源码和网上的博客之后自己的总结,不对的地方欢迎探讨。

HashMap的链表转红黑树 treeify

在HashMap的putVal方法中,有这么一段:

for (int binCount = 0; ; ++binCount) {
    if ((e = p.next) == null) {
        p.next = newNode(hash, key, value, null);
        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
            treeifyBin(tab, hash);  // 链表转红黑树
        break;
    }
    if (e.hash == hash &&
        ((k = e.key) == key || (key != null && key.equals(k))))
        break;
    p = e;
}

遍历Hash桶中的元素当链表长度大于等于 TREEIFY_THRESHOLD 时,就会进行链表转红黑树的动作,至于判断条件为什么是 binCount >= TREEIFY_THRESHOLD - 1,是因为 binCount没包含前两个元素,后面有注释 -1 for 1st(-1 表示 第一个)。

再来看下 treeifyBin(tab, hash) 方法:

/**
 * Replaces all linked nodes in bin at index for given hash unless
 * table is too small, in which case resizes instead.
 */
final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        TreeNode<K,V> hd = null, tl = null; // 定义首、尾节点
        do {
            TreeNode<K,V> p = replacementTreeNode(e, null); // 将节点转换成树节点
            if (tl == null) // 说明还没有根节点
                hd = p;
            else {
                p.prev = tl;    // 维护双向链表
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null);
        if ((tab[index] = hd) != null)
            hd.treeify(tab);
    }
}

首先判断数组长度是否达到了 MIN_TREEIFY_CAPACITY(64),如果没有的话,就进行扩容,而不是结构转换。即当数组长度没有达到64的话,没必要进行结构转换,而是进行扩容,将元素拆分到不同的Hash桶中

将hash值取模,得到数组下标,然后遍历这个Hash桶中的链表,将每个节点都转换成树节点(TreeNode),如下是 replacementTreeNode 方法

// For treeifyBin
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
    return new TreeNode<>(p.hash, p.key, p.value, next);
}

到目前为止,也只是把Node节点转换成TreeNode节点,并把单向链表变成双向链表,

hd.treeify(tab) 方法才是将链表转成红黑树的方法:

/**
 * Forms tree of the nodes linked from this node.
 * @return root of tree
 */
final void treeify(Node<K,V>[] tab) {
    TreeNode<K,V> root = null;
    for (TreeNode<K,V> x = this, next; x != null; x = next) {
        next = (TreeNode<K,V>)x.next;
        x.left = x.right = null;
        if (root == null) {
            x.parent = null;
            x.red = false;
            root = x;
        }
        else {
            K k = x.key;
            int h = x.hash;
            Class<?> kc = null;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph;
                K pk = p.key;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0)
                    dir = tieBreakOrder(k, pk);

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    x.parent = xp;
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    root = balanceInsertion(root, x);
                    break;
                }
            }
        }
    }
    moveRootToFront(tab, root);
}

这是个红黑树的构建过程,按照查找二叉树的性质,进行插入,然后再进行插入后的平衡操作。具体不详细讲,请搜索红黑树,虽然有点差异,但总体思路一致。

我们这里看几点,一个是对 dir 的判断

if ((ph = p.hash) > h)
    dir = -1;
else if (ph < h)
    dir = 1;
else if ((kc == null &&
          (kc = comparableClassFor(k)) == null) ||
         (dir = compareComparables(kc, k, pk)) == 0)
    dir = tieBreakOrder(k, pk);

dir 是 x(待插入节点)和 p(当前节点)的比较结果,如果是 -1 表示 x 比较小,放在 p 的左侧。否则 x 比较大,放在 p 的右侧。不可能为0(即相等)。

首先根据 key 的 hash 值的大小来判断,但是 hash 值有可能会相等(即使是 equals 不相等的情况),如果相等,就要根据其他方式进行比较,如果 key 实现了comparable接口,并且当前树节点和链表节点是相同Class的实例,那么通过comparable的方式再比较两者。如果还是相等,最后再通过tieBreakOrder比较一次。先看下 kc = comparableClassFor(k) 方法:

/**
 * Returns x's Class if it is of the form "class C implements
 * Comparable<C>", else null.
 */
static Class<?> comparableClassFor(Object x) {
    if (x instanceof Comparable) {
        Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
        if ((c = x.getClass()) == String.class) // bypass checks
            return c;
        if ((ts = c.getGenericInterfaces()) != null) {
            for (int i = 0; i < ts.length; ++i) {
                if (((t = ts[i]) instanceof ParameterizedType) &&
                    ((p = (ParameterizedType)t).getRawType() ==
                     Comparable.class) &&
                    (as = p.getActualTypeArguments()) != null &&
                    as.length == 1 && as[0] == c) // type arg is c
                    return c;
            }
        }
    }
    return null;
}

comparableClassFor 方法就是判断传进来的对象是否实现了 Comparable 接口,如果实现了,就返回这个对象的 Class 类对象,否则返回null。

再看 dir = compareComparables(kc, k, pk) 方法:

    /**
     * Returns k.compareTo(x) if x matches kc (k's screened comparable
     * class), else 0.
     */
    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

调用这个方法就说明了这个 key 是实现了 Comparable 接口的,然后调用 compareTo 获得比较结果。

如果比较结果是0,说明又是相等,那么这时候就使用终极绝招,调用 dir = tieBreakOrder(k, pk) 方法。

/**
 * Tie-breaking utility for ordering insertions when equal
 * hashCodes and non-comparable. We don't require a total
 * order, just a consistent insertion rule to maintain
 * equivalence across rebalancings. Tie-breaking further than
 * necessary simplifies testing a bit.
 */
static int tieBreakOrder(Object a, Object b) {
    int d;
    if (a == null || b == null ||
        (d = a.getClass().getName().
         compareTo(b.getClass().getName())) == 0)
        d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
             -1 : 1);
    return d;
}

当 key 的 hash 值无法比较时,并且没有实现 Comparable 接口,这是就调用 System.identityHashCode(a) 方法 比较大小,且返回值不可能为0。

System.identityHashCode 方法是根据内存地址计算出来的一个数值,默认情况下跟Object的hashCode方法的结果一致,但是hashCode方法是可以重写的,而这个方法不会被重写,计算出来的结果一定是跟内存地址相关的。所以用这个计算出来的结果进行比较,几乎是不可能会出现相等的情况。

计算出 dir 之后,用查找二叉树的方式插入,插入之后需要进行平衡操作:

root = balanceInsertion(root, x);

平衡操作不详细讲,请查阅红黑树

把所有的链表节点都遍历完之后,最终构造出来的树可能经历多次平衡操作,根节点目前到底是链表的哪一个节点是不确定的,所以我们需要把红黑树的根节点作为Hash桶的第一个节点。

moveRootToFront(tab, root);
/**
 * Ensures that the given root is the first node of its bin.
 */
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
    int n;
    if (root != null && tab != null && (n = tab.length) > 0) {
        int index = (n - 1) & root.hash;
        TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
        if (root != first) {
            Node<K,V> rn;
            tab[index] = root;
            TreeNode<K,V> rp = root.prev;
            if ((rn = root.next) != null)
                ((TreeNode<K,V>)rn).prev = rp;
            if (rp != null)
                rp.next = rn;
            if (first != null)
                first.prev = root;
            root.next = first;
            root.prev = null;
        }
        assert checkInvariants(root);
    }
}

TreeNode既是一个红黑树结构,也是一个双链表结构,这个方法里做的事情,就是保证树的根节点一定也要成为链表的首节点。

我们看到在代码的最后一段:

assert checkInvariants(root);
/**
 * Recursive invariant check
 */
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
    TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
        tb = t.prev, tn = (TreeNode<K,V>)t.next;
    if (tb != null && tb.next != t)
        return false;
    if (tn != null && tn.prev != t)
        return false;
    if (tp != null && t != tp.left && t != tp.right)
        return false;
    if (tl != null && (tl.parent != t || tl.hash > t.hash))
        return false;
    if (tr != null && (tr.parent != t || tr.hash < t.hash))
        return false;
    if (t.red && tl != null && tl.red && tr != null && tr.red)
        return false;
    if (tl != null && !checkInvariants(tl))
        return false;
    if (tr != null && !checkInvariants(tr))
        return false;
    return true;
}

这一步是防御性编程,用递归的方式校验每一个TreeNode节点是否满足红黑树和双向链表的特性。如果这个方法校验不通过:可能是因为用户编程失误,破坏了结构(例如:并发场景下);也可能是TreeNode的实现有问题(这个是理论上的以防万一)

至此,链表转红黑树的整个过程就已经结束了。我们可以看出,链表转红黑树的条件还是比较苛刻的,Hash 桶数组长度不能少于64个,否则节点达到阈值会先考虑扩容,扩容的时候就会重新拆分节点到新的 Hash 桶中,而且,只有在 hashCode 的实现很糟糕,极端的情况下,才会导致一个Hash桶有超过8个节点。

JDK1.8 虽然引入了红黑树,但实际情况中还是会很少用到的,但是红黑树是一个非常经典优秀的数据结构,所以学习一下还是非常有必要的

HashMap的hash算法

HashMap是用Hash表来存储数据的,存放数据之前第一步要做的就是定位Hash桶,一个好的hash算法可以减少Hash碰撞,使数据更加分散均匀地存储在Hash桶中,Map的存储效率就会越高。

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

在调用真正的putVal方法之前,调用了hash(key)方法对key进行hash计算。

HashMap的hash算法分为三步,1、获取key自身的hashCode值;2、高位运算;3、取模运算。

前两步在hash方法中,而第三步在putVal中才会计算

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
i = (n - 1) & hash
  1. key.hashCode():获取key自身的hashCode值
  2. (h = key.hashCode()) ^ (h >>> 16):将获取的hashCode值进行高位运算,让高16位也参与运算,计算出更加分散的hash值,具体是将hashCode值向右移16位,再与自身进行异或。
  3. 计算出来的新的hash值对容量(也就是Hash桶数组长度)取模,最终定位某一个Hash桶,第三步在putVal方法中。因为n一定为2的幂次数,所以 (n - 1) & hash 实际上就是hash对n的取模,而这样子的操作比 hash%n 快很多,这也是为什么HashMap要将数组长度设为2的幂次数的原因之一。

计算流程如下:


https://images2018.cnblogs.com/blog/1331009/201802/1331009-20180226152430594-1656669455.png

HashMap为何将容量设计为2的幂次数?

我们知道HashMap的容量大小,也就是Hash桶的数量一定要是2的幂次数,这是一种非常规的设计。为了能减少冲突的概率,一般会选择素数,像Hashtable初始化桶的数量就是11

那这么设计的目的是什么呢? 主要是为了在取模和扩容时做优化

在HashMap构造方法中,如果传入的参数不为2的幂次数,HashMap会将其转换为向上取最小的2的幂次数,如传入的大小为20,则HashMap会转换为32,最终创建了一个Hash桶长度为32的实例。利用了tableSizeFor这个方法

/**
 * Returns a power of two size for the given target capacity.
 */
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

上面的位运算可以理解为,将cap的尾部几位全部置1,最后在加1,就可以计算出比cap大的最小幂次数了。

上面讲到,设计为2的幂次数主要为了在取模和扩容时做优化:

  1. 在取模时,对于新计算出来的hash值,对Hash桶长度n取模,可以 hash & (n - 1) ,这种操作比 hash % n 速度快很多,而这种方式的优化只有在 n 为2的幂次数的时候才有效。上面的HashMap的hash算法有讲到
  2. 在扩容时,由于Hash桶是2的幂次数,在扩容之后,Hash桶的长度变为原来的两倍,那么所有的key要么在原来的位置,要么在增加2的幂次数的位置,只要将原本的hash值往前看一位,如果是0,就在原位置,如果是1,就是往后增加2的幂次数的位置。上面的扩容resize中有讲到

还有其他的,有空再梳理

以上只是简单梳理了源码的流程,更多的细节以及设计的思路还等待探索...

参考:
https://www.cnblogs.com/kangkaii/p/8473793.html
https://www.zhihu.com/question/20733617
等等...

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351