PyTorch Autograd

pytorch是动态计算的模式,训练过程分为前向传播和后向传播,前向传播的顺序由计算代码确定,后向传播随着前向传播过程生成计算图,那么在pytorch中,后向传播的具体实现是什么样的呢。

数据结构

Node类表示autograd图中的节点,Edge是autograd的边,连接节点。

struct TORCH_API Node : std::enable_shared_from_this<Node> {
 /// Performs the `Node`'s actual operation.
  virtual variable_list apply(variable_list&& inputs) = 0;
  edge_list next_edges_;
};
struct Edge {
  Edge() noexcept : function(nullptr), input_nr(0) {}

  Edge(std::shared_ptr<Node> function_, uint32_t input_nr_) noexcept
      : function(std::move(function_)), input_nr(input_nr_) {}

  /// Convenience method to test if an edge is valid.
  bool is_valid() const noexcept {
    return function != nullptr;
  }

  // Required for use in associative containers.
  bool operator==(const Edge& other) const noexcept {
    return this->function == other.function && this->input_nr == other.input_nr;
  }

  bool operator!=(const Edge& other) const noexcept {
    return !(*this == other);
  }

  /// The function this `Edge` points to.
  std::shared_ptr<Node> function;

  /// The identifier of a particular input to the function.
  uint32_t input_nr;
};

每个Operator都会有正向函数和反向梯度函数, 在pytorch中,每个operator的反向梯度函数都是一个继承Node的结构体,例如mean operator的梯度函数是

struct TORCH_API MeanBackward0 : public TraceableFunction {
  using TraceableFunction::TraceableFunction;
  variable_list apply(variable_list&& grads) override;
  std::string name() const override { return "MeanBackward0"; }
  void release_variables() override {


  }
  std::vector<int64_t> self_sizes;
  int64_t self_numel = 0;
  at::ScalarType self_scalar_type;
};

此外,它的apply方法是反向过程的具体实现

variable_list MeanBackward0::apply(variable_list&& grads) {
  IndexRangeGenerator gen;
  auto self_ix = gen.range(1);
  variable_list grad_inputs(gen.size());
  const auto& grad = grads[0];
  bool any_grad_defined = any_variable_defined(grads);
  if (should_compute_output({ self_ix })) {
    auto grad_result = any_grad_defined ? (grad.expand(self_sizes).to(self_scalar_type) / self_numel) : Tensor();
    copy_range(grad_inputs, self_ix, grad_result);
  }
  return grad_inputs;
}

构建autograd图过程

构建autograd图发生在前向传播过程中
Tensor类有一个成员变量grad_fn,理解为梯度函数, 表示生成tensor的操作的反向函数

const std::shared_ptr<torch::autograd::Node>& grad_fn() const;

梯度函数是在生成tensor的时候创建并赋值的,以下面的mean函数为例
mean函数是前向函数,
首先,在8行到15行,创建了MeanBackward0梯度函数对象
其次,在22行到26行,执行前向函数的计算过程,获得输出tensor result
最后,35行,将梯度函数对象赋值给result
另外第11行确定了图节点Node之间的关系,第11行在self和result之间构成了一条边,并且self是result的下一个节点。在前向传播过程中,是由self->result的计算顺序,而后向传播则是先计算result的梯度,然后再计算self的梯度,是result->self的顺序

at::Tensor mean(c10::DispatchKeySet ks, const at::Tensor & self, c10::optional<at::ScalarType> dtype) {
  auto& self_ = unpack(self, "self", 0);
  auto _any_requires_grad = compute_requires_grad( self );
  
  (void)_any_requires_grad;
  auto _any_has_forward_grad_result = isFwGradDefined(self);
  (void)_any_has_forward_grad_result;
  std::shared_ptr<MeanBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<MeanBackward0>(new MeanBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->self_sizes = self.sizes().vec();
    grad_fn->self_numel = self.numel();
    grad_fn->self_scalar_type = self.scalar_type();
  }
  #ifndef NDEBUG
  c10::optional<Storage> self__storage_saved =
    self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
  c10::intrusive_ptr<TensorImpl> self__impl_saved;
  if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::mean(ks & c10::after_autograd_keyset, self_, dtype);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  if (self__storage_saved.has_value())
    AT_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
  if (self__impl_saved) AT_ASSERT(self__impl_saved == self_.getIntrusivePtr());
  if (result.has_storage()) AT_ASSERT(result.storage().use_count() == 1, "function: mean");
  AT_ASSERT(result.use_count() <= 1, "function: mean");
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  if (_any_has_forward_grad_result) {
      auto self_t_raw = toNonOptFwGrad(self);
      auto self_t = self_t_raw.defined() ? self_t_raw : at::zeros_like(toNonOptTensor(self));
      auto result_new_fw_grad = at::mean(self_t, dtype);
      if (result_new_fw_grad.defined()) {
        // The hardcoded 0 here will need to be updated once we support multiple levels.
        result._set_fw_grad(result_new_fw_grad, /* level */ 0, /* is_inplace_op */ false);
      }
  }
  return result;
}

后向传播

当前向传播结束后,梯度函数之间的关系已经建立起来,运行loss.backward()即可执行后向传播过程
具体的代码实现顺序如下

  1. 从顶层的节点开始执行后向传播
auto Engine::execute(const edge_list& roots,
                     const variable_list& inputs,
                     bool keep_graph,
                     bool create_graph,
                     bool accumulate_grad,
                     const edge_list& outputs) -> variable_list {
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
  '''

  auto graph_task = std::make_shared<GraphTask>(
      /* keep_graph */ keep_graph,
      /* create_graph */ create_graph,
      /* depth */ not_reentrant_backward_call ? 0 : total_depth + 1,
      /* cpu_ready_queue */ local_ready_queue);

  // If we receive a single root, skip creating extra root node
  bool skip_dummy_node = roots.size() == 1;
  auto graph_root = skip_dummy_node ?
    roots.at(0).function :
    std::make_shared<GraphRoot>(roots, inputs);

  auto min_topo_nr = compute_min_topological_nr(outputs);
  // Now compute the dependencies for all executable functions
  compute_dependencies(graph_root.get(), *graph_task, min_topo_nr);

  if (!outputs.empty()) {
    graph_task->init_to_execute(*graph_root, outputs, accumulate_grad, min_topo_nr);
  }

  // Queue the root
  if (skip_dummy_node) {
    InputBuffer input_buffer(roots.at(0).function->num_inputs());
    auto input = inputs.at(0);

    const auto input_stream = InputMetadata(input).stream();
    const auto opt_next_stream = roots.at(0).function->stream(c10::DeviceType::CUDA);
    input_buffer.add(roots.at(0).input_nr,
                      std::move(input),
                      input_stream,
                      opt_next_stream);

    execute_with_graph_task(graph_task, graph_root, std::move(input_buffer));
  } else {
    execute_with_graph_task(graph_task, graph_root, InputBuffer(variable_list()));
  }
  // Avoid a refcount bump for the Future, since we check for refcount in
  // DistEngine (see TORCH_INTERNAL_ASSERT(futureGrads.use_count() == 1)
  // in dist_engine.cpp).
  auto& fut = graph_task->future_result_;
  fut->wait();
  return fut->value().toTensorVector();
}
  1. 一个梯度函数Node的运行封装成NodeTask,放入队列中处理,例如先将根节点放入队列,然后从队列中拿出根节点处理,然后将下面的节点放入队列,依次拿出...
c10::intrusive_ptr<at::ivalue::Future> Engine::execute_with_graph_task(
    const std::shared_ptr<GraphTask>& graph_task,
    std::shared_ptr<Node> graph_root,
    InputBuffer&& input_buffer) {
  initialize_device_threads_pool();
  // Lock mutex for GraphTask.
  std::unique_lock<std::mutex> lock(graph_task->mutex_);

  auto queue = ready_queue(graph_task->cpu_ready_queue_, input_buffer.device());

  // worker_device == NO_DEVICE it's a CPU thread and it's trying to drive the
  // autograd engine with corresponding GraphTask, and its NOT a re-entrant call
  if (worker_device == NO_DEVICE) {
    // We set the worker_device to CPU_DEVICE only if worker_device was previously
    // NO_DEVICE. Setting it to CPU afterwards allow us to detect whether this is
    // a re-entrant call or not.
    set_device(CPU_DEVICE);

    // set the graph_task owner to the current device
    graph_task->owner_ = worker_device;

    // Now that all the non-thread safe fields of the graph_task have been populated,
    // we can enqueue it.
    queue->push(NodeTask(graph_task, std::move(graph_root), std::move(input_buffer)));

    // The owning thread start to drive the engine execution for any CPU task that
    // was just pushed or will be added later from other worker threads
    lock.unlock();
    thread_main(graph_task);
    TORCH_INTERNAL_ASSERT(graph_task->future_result_->completed());
    // reset the worker_device after the completion of the graph_task, this is so
    // that the initial state of the engine remains the same across every backward()
    // or grad() call, we don't need to reset local_ready_queue as we could possibly
    // reuse it for new backward calls.
    worker_device = NO_DEVICE;
  } else {
    // If worker_device is any devices (i.e. CPU, CUDA): this is a re-entrant
    //    backward call from that device.
    graph_task->owner_ = worker_device;

    // Now that all the non-thread safe fields of the graph_task have been populated,
    // we can enqueue it.
    queue->push(NodeTask(graph_task, std::move(graph_root), std::move(input_buffer)));

    if (current_depth >= max_recursion_depth_) {
      // See Note [Reentrant backwards]
      // If reached the max depth, switch to a different thread
      add_thread_pool_task(graph_task);
    } else {
      // Total depth needs to be updated only in this codepath, since it is
      // not used in the block above (when we call add_thread_pool_task).
      // In the codepath above, GraphTask.reentrant_depth_ is used to
      // bootstrap total_depth in the other thread.
      ++total_depth;

      // Get back to work while we wait for our new graph_task to
      // complete!
      ++current_depth;
      lock.unlock();
      thread_main(graph_task);
      --current_depth;
      --total_depth;

      // The graph task should have completed and the associated future should
      // be marked completed as well since 'thread_main' above is a call
      // blocking an autograd engine thread.
      TORCH_INTERNAL_ASSERT(graph_task->future_result_->completed());
    }
  }
  // graph_task_exec_post_processing is done when the Future is marked as
  // completed in mark_as_completed_and_run_post_processing.
  return graph_task->future_result_;
}
  1. thread_main方法的while循环每次有队列中拿取节点处理
auto Engine::thread_main(const std::shared_ptr<GraphTask>& graph_task) -> void {
  // When graph_task is nullptr, this is a long running thread that processes
  // tasks (ex: device threads). When graph_task is non-null (ex: reentrant
  // backwards, user thread), this function is expected to exit once that
  // graph_task complete.


  // local_ready_queue should already been initialized when we get into thread_main
  TORCH_INTERNAL_ASSERT(local_ready_queue != nullptr);
  while (graph_task == nullptr || !graph_task->future_result_->completed()) {
    // local_graph_task represents the graph_task we retrieve from the queue.
    // The outer graph_task represents the overall graph_task we need to execute
    // for reentrant execution.
    std::shared_ptr<GraphTask> local_graph_task;
    {
      // Scope this block of execution since NodeTask is not needed after this
      // block and can be deallocated (release any references to grad tensors
      // as part of inputs_).
      NodeTask task = local_ready_queue->pop();
      // This will only work if the worker is running a non backward task
      // TODO Needs to be fixed this to work in all cases
      if (task.isShutdownTask_) {
        C10_LOG_API_USAGE_ONCE("torch.autograd.thread_shutdown");
        break;
      }


      if (!(local_graph_task = task.base_.lock())) {
        // GraphTask for function is no longer valid, skipping further
        // execution.
        continue;
      }


      if (task.fn_ && !local_graph_task->has_error_.load()) {
        // Set the ThreadLocalState before calling the function.
        // NB: The ThreadLocalStateGuard doesn't set the grad_mode because GraphTask
        // always saves ThreadLocalState without grad_mode.
        at::ThreadLocalStateGuard tls_guard(local_graph_task->thread_locals_);


        try {
          // The guard sets the thread_local current_graph_task on construction
          // and restores it on exit. The current_graph_task variable helps
          // queue_callback() to find the target GraphTask to append final
          // callbacks.
          GraphTaskGuard guard(local_graph_task);
          NodeGuard ndguard(task.fn_);
          {
            RECORD_FUNCTION(
                c10::str(
                    "autograd::engine::evaluate_function: ",
                    task.fn_.get()->name()),
                std::vector<c10::IValue>());
            evaluate_function(
                local_graph_task,
                task.fn_.get(),
                task.inputs_,
                local_graph_task->cpu_ready_queue_);
          }
        } catch (std::exception& e) {
          thread_on_exception(local_graph_task, task.fn_, e);
        }
      }
    }


    // Decrement the outstanding tasks.
    --local_graph_task->outstanding_tasks_;


    // Check if we've completed execution.
    if (local_graph_task->completed()) {
      local_graph_task->mark_as_completed_and_run_post_processing();


      auto base_owner = local_graph_task->owner_;
      // The current worker thread finish the graph_task, but the owning thread
      // of the graph_task might be sleeping on pop() if it does not have work.
      // So we need to send a dummy function task to the owning thread just to
      // ensure that it's not sleeping, so that we can exit the thread_main.
      // If it has work, it might see that graph_task->outstanding_tasks_ == 0
      // before it gets to the task, but it's a no-op anyway.
      //
      // NB: This is not necessary if the current thread is the owning thread.
      if (worker_device != base_owner) {
        // Synchronize outstanding_tasks_ with queue mutex
        std::atomic_thread_fence(std::memory_order_release);
        ready_queue_by_index(local_graph_task->cpu_ready_queue_, base_owner)
            ->push(NodeTask(local_graph_task, nullptr, InputBuffer(0)));
      }
    }
  }
}
  1. evaluation_function主要做两件事,一个是调用call_function执行梯度函数,另一个是将后续节点依据情况放入队列
void Engine::evaluate_function(
    std::shared_ptr<GraphTask>& graph_task,
    Node* func,
    InputBuffer& inputs,
    const std::shared_ptr<ReadyQueue>& cpu_ready_queue) {
  // The InputBuffer::adds that supplied incoming grads took pains to
  // ensure they're safe to consume in the context of the present
  // func's stream (if applicable). So we guard onto that stream
  // before working with the grads in any capacity.
  const auto opt_parent_stream = (*func).stream(c10::DeviceType::CUDA);
  c10::OptionalStreamGuard parent_stream_guard{opt_parent_stream};


  // If exec_info_ is not empty, we have to instrument the execution
  auto& exec_info_ = graph_task->exec_info_;
  if (!exec_info_.empty()) {
    auto& fn_info = exec_info_.at(func);
    if (auto* capture_vec = fn_info.captures_.get()) {
      // Lock mutex for writing to graph_task->captured_vars_.
      std::lock_guard<std::mutex> lock(graph_task->mutex_);
      for (const auto& capture : *capture_vec) {
        auto& captured_grad = graph_task->captured_vars_[capture.output_idx_];
        captured_grad = inputs[capture.input_idx_];
        for (auto& hook : capture.hooks_) {
          captured_grad = (*hook)(captured_grad);
        }
        if (opt_parent_stream) {
          // No need to take graph_task->mutex_ here, we already hold it
          graph_task->leaf_streams.emplace(*opt_parent_stream);
        }
      }
    }
    if (!fn_info.needed_) {
      // Skip execution if we don't need to execute the function.
      return;
    }
  }


  auto outputs = call_function(graph_task, func, inputs);


  auto& fn = *func;
  if (!graph_task->keep_graph_) {
    fn.release_variables();
  }


  int num_outputs = outputs.size();
  if (num_outputs == 0) { // Note: doesn't acquire the mutex
    // Records leaf stream (if applicable)
    // See Note [Streaming backwards]
    if (opt_parent_stream) {
      std::lock_guard<std::mutex> lock(graph_task->mutex_);
      graph_task->leaf_streams.emplace(*opt_parent_stream);
    }
    return;
  }


  if (AnomalyMode::is_enabled()) {
    AutoGradMode grad_mode(false);
    for (const auto i : c10::irange(num_outputs)) {
      auto& output = outputs[i];
      at::OptionalDeviceGuard guard(device_of(output));
      if (output.defined() && isnan(output).any().item<uint8_t>()) {
        std::stringstream ss;
        ss << "Function '" << fn.name() << "' returned nan values in its " << i << "th output.";
        throw std::runtime_error(ss.str());
      }
    }
  }


  // Lock mutex for the accesses to GraphTask dependencies_, not_ready_ and cpu_ready_queue_ below
  std::lock_guard<std::mutex> lock(graph_task->mutex_);
  for (const auto i : c10::irange(num_outputs)) {
    auto& output = outputs[i];
    const auto& next = fn.next_edge(i);


    if (!next.is_valid()) continue;


    // Check if the next function is ready to be computed
    bool is_ready = false;
    auto& dependencies = graph_task->dependencies_;
    auto it = dependencies.find(next.function.get());


    if (it == dependencies.end()) {
      auto name = next.function->name();
      throw std::runtime_error(std::string("dependency not found for ") + name);
    } else if (--it->second == 0) {
      dependencies.erase(it);
      is_ready = true;
    }


    auto& not_ready = graph_task->not_ready_;
    auto not_ready_it = not_ready.find(next.function.get());
    if (not_ready_it == not_ready.end()) {
      // Skip functions that aren't supposed to be executed
      if (!exec_info_.empty()) {
        auto it = exec_info_.find(next.function.get());
        if (it == exec_info_.end() || !it->second.should_execute()) {
          continue;
        }
      }
      // No buffers have been allocated for the function
      InputBuffer input_buffer(next.function->num_inputs());


      // Accumulates into buffer
      const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
      input_buffer.add(next.input_nr,
                       std::move(output),
                       opt_parent_stream,
                       opt_next_stream);


      if (is_ready) {
        auto queue = ready_queue(cpu_ready_queue, input_buffer.device());
        queue->push(
            NodeTask(graph_task, next.function, std::move(input_buffer)));
      } else {
        not_ready.emplace(next.function.get(), std::move(input_buffer));
      }
    } else {
      // The function already has a buffer
      auto &input_buffer = not_ready_it->second;


      // Accumulates into buffer
      const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
      input_buffer.add(next.input_nr,
                       std::move(output),
                       opt_parent_stream,
                       opt_next_stream);
      if (is_ready) {
        auto queue = ready_queue(cpu_ready_queue, input_buffer.device());
        queue->push(
            NodeTask(graph_task, next.function, std::move(input_buffer)));
        not_ready.erase(not_ready_it);
      }
    }
  }
}
  1. call_function 由输入和函数,计算梯度作为输出,输出将通过节点之间关系作为下一个梯度函数的输入
static variable_list call_function(
    std::shared_ptr<GraphTask>& graph_task,
    Node* func,
    InputBuffer& inputBuffer) {
  CheckpointValidGuard cpvguard(graph_task);
  auto& fn = *func;
  auto inputs =
      call_pre_hooks(fn, InputBuffer::variables(std::move(inputBuffer)));

  if (!graph_task->keep_graph_) {
    fn.will_release_variables();
  }

  const auto has_post_hooks = !fn.post_hooks().empty();
  variable_list outputs;

  if (has_post_hooks) {
    // In functions/accumulate_grad.cpp, there is some logic to check the
    // conditions under which the incoming gradient can be stolen directly
    // (which elides a deep copy) instead of cloned. One of these conditions
    // is that the incoming gradient's refcount must be 1 (nothing else is
    // referencing the same data).  Stashing inputs_copy here bumps the
    // refcount, so if post hooks are employed, it's actually still ok for
    // accumulate_grad.cpp to steal the gradient if the refcount is 2.
    //
    // "new_grad.use_count() <= 1 + !post_hooks().empty()" in
    // accumulate_grad.cpp accounts for this, but also creates a silent
    // dependency between engine.cpp (ie, this particular engine
    // implementation) and accumulate_grad.cpp.
    //
    // If you change the logic here, make sure it's compatible with
    // accumulate_grad.cpp.
    auto inputs_copy = inputs;
    outputs = fn(std::move(inputs_copy));
  } else {
    outputs = fn(std::move(inputs));
  }

  validate_outputs(fn.next_edges(), outputs, [&](const std::string& msg) {
    std::ostringstream ss;
    ss << "Function "  << fn.name() << " returned an " << msg;
    return ss.str();
  });

  if(has_post_hooks){
    // NOLINTNEXTLINE(bugprone-use-after-move)
    return call_post_hooks(fn, std::move(outputs), inputs);
  }
  return outputs;
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容